
Week 1: Week 1: Gettin� Starte� wit� RGettin� Starte� wit� R
EMSE 4574: Intro to Programming for AnalyticsEMSE 4574: Intro to Programming for Analytics

John Paul HelvestonJohn Paul Helveston

September 01, 2020September 01, 2020

Week 1: Week 1: Gettin� Starte� wit� RGettin� Starte� wit� R

1. Course Introduction1. Course Introduction

2. Break: Install Course Tools2. Break: Install Course Tools

3. Getting started with R & RStudio3. Getting started with R & RStudio

4. Operators & data types4. Operators & data types

5. Preview of HW 15. Preview of HW 1
2 / 622 / 62

Week 1: Week 1: Gettin� Starte� wit� RGettin� Starte� wit� R

1. 1. Course IntroductionCourse Introduction

2. Break: Install Course Tools2. Break: Install Course Tools

3. Getting started with R & RStudio3. Getting started with R & RStudio

4. Operators & data types4. Operators & data types

5. Preview of HW 15. Preview of HW 1
3 / 623 / 62

John Helveston, Ph.D.

Assistant Professor, Engineering Management & Systems Engineering

2016-2018 Postdoc at Institute for Sustainable Energy, Boston University

2016 PhD in Engineering & Public Policy at Carnegie Mellon University

2015 MS in Engineering & Public Policy at Carnegie Mellon University

2010 BS in Engineering Science & Mechanics at Virginia Tech

Website: www.jhelvy.com

Meet your instructor!

4 / 62

https://www.bu.edu/ise/
http://www.jhelvy.com/

Saurav Pantha (aka "The Firefighter")

Graduate Assistant (GA)

Masters student in EMSE

Meet your tutors!

5 / 62

Jennifer Kim (aka "The Monitor")

Learning Assistant (LA)

EMSE Junior & P4A alumni

Meet your tutors!

6 / 62

Course orientation
 Everything you need will be on the course website:

https://p4a.seas.gwu.edu/2020-Fall/

 Course is broken into two chunks:

1. Programming

2. Analytics
7 / 62

https://p4a.seas.gwu.edu/2020-Fall/

Homeworks (48% of grade)
 ~Every week (12 total)

 Soft due dates (11pm Monday before class)

 Don't abuse this flexibility

Two hard deadlines on homework submissions:

1. Oct. 20 (HWs 1-6)

2. Dec. 08 (HWs 7-12)
8 / 62

Quizzes (15% of grade)
 In class every other week-ish (7 total, drop lowest 2)

 5 minutes (3-5 questions)

 Example quiz
Why quiz at all? There's a phenomenon called the "retrieval effect" - basically,
you have to practice remembering things, otherwise your brain won't remember
them (details in the book "Make It Stick: The Science of Successful Learning").

9 / 62

https://p4aquizdemo.formr.org/
https://www.hup.harvard.edu/catalog.php?isbn=9780674729018

Exams (32% of grade)
 Midterm (weeks 1 - 6) on Oct. 20

 Final (weeks 1 - 13) on Dec. 15

10 / 62

Grading: Standard

Course Component Weight Notes

Homeworks 48% 12 x 4% each

Quizzes 15% 5 x 3% each

Midterm Exam 12%

Final Exam 20%

Participation 5%

11 / 62

Grading: Alternative Minimum Grade (AMG)
Students who struggle early on, but work hard to succeed in 2nd half.

Highest possible grade is "C"

Course Component Weight

Best 10 Homeworks 40%

Best 4 Quizzes 10%

Midterm Exam 10%

Final Exam 40%

12 / 62

Course policies

BE NICE. BE HONEST. DON'T CHEAT.

Write your own code (even in "collaborative" assignments)

Don't cheat

13 / 62

Take care of your brain

Sleep!

Exercise!

Eat good food!

Start HW early!

Take breaks often!

Ask for help!

How to succeed in this class

14 / 62

Getting Help
 Use Slack to ask questions.

 Meet with your tutors

 Schedule a meeting w/Prof. Helveston:
Tuesdays from 3:30-4:30pm

Wednesdays from 2:00-4:30pm

Fridays from 12:00-2:00pm

 GW Coders 15 / 62

https://p4a.seas.gwu.edu/2020-Fall/ref-getting-help.html
https://emse-p4a-f20.slack.com/
https://jhelvy.appointlet.com/b/professor-helveston
http://gwcoders.github.io/

 Course Tools (see course prep lesson)
 Slack

Link to join (also posted on Blackboard announcement).

Install Slack on your phone and turn notifications on!

16 / 62

https://p4a.seas.gwu.edu/2020-Fall/L0-course-prep.html
https://emse-p4a-f20.slack.com/
https://join.slack.com/t/emse-p4a-f20/shared_invite/zt-gvto0fas-TXP6IRWdbSA_m_4UglGsLA

After installed:

Open this:

Not this:

R: Engine RStudio: Dashboard

 Course Tools (see course prep lesson)
 R & RStudio (Install both)

17 / 62

https://p4a.seas.gwu.edu/2020-Fall/L0-course-prep.html
https://cloud.r-project.org/
https://rstudio.com/products/rstudio/download/

 Course Tools (see course prep lesson)

 GWU VPN (Install Cisco AnyConnect VPN Client)

 + = RStudio online!

18 / 62

https://p4a.seas.gwu.edu/2020-Fall/L0-course-prep.html
https://seascf.seas.gwu.edu/vpn-access
https://rstudio.seas.gwu.edu/

Week 1: Week 1: Gettin� Starte� wit� RGettin� Starte� wit� R

1. Course Introduction1. Course Introduction

2. 2. Break: Install Course ToolsBreak: Install Course Tools

3. Getting started with R & RStudio3. Getting started with R & RStudio

4. Operators & data types4. Operators & data types

5. Preview of HW 15. Preview of HW 1
19 / 6219 / 62

 Install Course Tools (see course prep lesson)
 Slack

Link to join (also posted on Blackboard announcement).

Install Slack on your phone and turn notifications on!

 R & RStudio (Install both)

 GWU VPN (Install Cisco AnyConnect VPN Client)

 + = RStudio online!
20 / 62

https://p4a.seas.gwu.edu/2020-Fall/L0-course-prep.html
https://emse-p4a-f20.slack.com/
https://join.slack.com/t/emse-p4a-f20/shared_invite/zt-gvto0fas-TXP6IRWdbSA_m_4UglGsLA
https://cloud.r-project.org/
https://rstudio.com/products/rstudio/download/
https://seascf.seas.gwu.edu/vpn-access
https://rstudio.seas.gwu.edu/

Week 1: Week 1: Gettin� Starte� wit� RGettin� Starte� wit� R

1. Course Introduction1. Course Introduction

2. Break: Install Course Tools2. Break: Install Course Tools

3. 3. Getting started with R & RStudioGetting started with R & RStudio

4. Operators & data types4. Operators & data types

5. Preview of HW 15. Preview of HW 1
21 / 6221 / 62

Know the boxes

Customize the layout

Customize the look

Extra themes

RStudio Orientation

22 / 62

https://github.com/gadenbuie/rsthemes

Your first conveRsation
Write stuff in the console, then press "enter"

 Example: addition

3 + 4

[1] 7

 Example: error

3 + "4"

Error in 3 + "4": non-numeric argument to binary operator

23 / 62

Storing values
Use the "<-" symbol to assign values to objects

 Example:

x <- 40
x

[1] 40

x + 2

[1] 42

24 / 62

Storing values
If you overwrite an object, R "forgets" the old value

 Example:

x <- 42
x

[1] 42

x <- 50
x

[1] 50

25 / 62

Storing values
You can also use the "=" symbol to assign values

(but you really should use "<-")

 Example:

x = 42
x

[1] 42

y <- 42
y

[1] 42

26 / 62

Storing values
You can store more than just numbers

 Example:

x <- "If you want to view paradise"
y <- "simply look around and view it"

x

[1] "If you want to view paradise"

y

[1] "simply look around and view it"

27 / 62

Pro tip 1:

Shortcut for "<-" symbol

OS Shortcut

mac option + -

windows alt + -

(see here for more shortcuts)

Pro tip 2:

Always surround "<-" with spaces

Example:

x<-2

Does this mean x <- 2 or x < -2?

Storing values

28 / 62

https://support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts

R ignores extra space
x <- 2
y <- 3
z <- 4

Check:

x

[1] 2

y

[1] 3

z

[1] 4

R cares about case
number <- 2
Number <- 3
numbeR <- 4

Check:

number

[1] 2

Number

[1] 3

numbeR

[1] 4

29 / 62

Use # for comments
R ignores everything after the # symbol

Example:

speed <- 42 # This is mph, not km/h!
speed

[1] 42

30 / 62

Use meaningful variable names
Example: You are recording the speed of a car in mph

Poor variable name:

x <- 42

Good variable name:

speed <- 42

Even better variable name:

car_speed_mph <- 42

31 / 62

Art by Allison Horst

I recommend using one of these:

snake_case_uses_underscores

camelCaseUsesCaps

Example:

days_in_week <- 7
monthsInYear <- 12

Use standard casing styles

32 / 62

https://github.com/allisonhorst/stats-illustrations

View all the current objects:

objects()

Remove an object by name:

rm(number)
objects()

The workspace

[1] "car_speed_mph" "days_in_week" "monthsIn
[5] "numbeR" "Number" "speed"
[9] "y" "z"

[1] "car_speed_mph" "days_in_week" "monthsInY
[5] "Number" "speed" "x"
[9] "z"

33 / 62

View prior code in history pane

Use "up" arrow see previous code
34 / 62

Staying organized

1) Save your code in .R files

 File > New File > R Script

2) Keep work in R Project files

File > New Project...

35 / 62

Your turnYour turn

A. Practice getting organizedA. Practice getting organized

1. Open RStudio and create a new R project calledOpen RStudio and create a new R project called
week1week1..

2. Create a new R script and save it as Create a new R script and save it as practice.Rpractice.R..

3. Open the Open the practice.Rpractice.R file and write your answers file and write your answers
to the question below in it.to the question below in it.

B. Creating & working with objectsB. Creating & working with objects

1). Create objects to store the values in this table:1). Create objects to store the values in this table:

CityCity Area (sq. mi.)Area (sq. mi.) PopulationPopulation

San Francisco, CASan Francisco, CA 46.8746.87 884,363884,363

Chicago, ILChicago, IL 227.63227.63 2,716,4502,716,450

Washington, DCWashington, DC 61.0561.05 693,972693,972

2) Use the objects you created to answer the following2) Use the objects you created to answer the following
questions:questions:

- Which city has the highest density?- Which city has the highest density?
- How many _more_ people would need to live in DC- How many _more_ people would need to live in DC

1010::0000
36 / 6236 / 62

Week 1: Week 1: Gettin� Starte� wit� RGettin� Starte� wit� R

1. Course Introduction1. Course Introduction

2. Break: Install Course Tools2. Break: Install Course Tools

3. Getting started with R & RStudio3. Getting started with R & RStudio

4. 4. Operators & data typesOperators & data types

5. Preview of HW 15. Preview of HW 1
37 / 6237 / 62

Basic operators:

Addition: +

Subtraction: -

Multiplication: *

Division: /

Other important operators:

Power: ^

Integer Division: %/%

Modulus: %%

R as a calculator

38 / 62

Integer division: %/%
Integer division drops the remainder

 Example:

4 / 3 # Regular division

[1] 1.333333

4 %/% 3 # Integer division

[1] 1

39 / 62

Integer division: %/%
Integer division drops the remainder

 What will this return?

4 %/% 4

[1] 1

What will this return?

4 %/% 5

[1] 0

40 / 62

Modulus operator: %%
Modulus returns the remainder after doing integer division

 Example:

5 %% 3

[1] 2

3.1415 %% 3

[1] 0.1415

41 / 62

Modulus operator: %%
Modulus returns the remainder after doing integer division

 What will this return?

4 %% 4

[1] 0

What will this return?

4 %% 5

[1] 4

42 / 62

If n %% 2 is 0, n is EVEN

10 %% 2

[1] 0

12 %% 2

[1] 0

Also works with negative numbers!

-42 %% 2

[1] 0

If n %% 2 is 1, n is ODD

1 %% 2

[1] 1

13 %% 2

[1] 1

Also works with negative numbers!

-47 %% 2

[1] 1

Odds and evens with n %% 2

43 / 62

The mod operator (%%) "chops" a number
and returns everything to the right

123456 %% 1

[1] 0

123456 %% 10

[1] 6

123456 %% 100

[1] 56

Integer division (%/%) "chops" a number
and returns everything to the left

123456 %/% 1

[1] 123456

123456 %/% 10

[1] 12345

123456 %/% 100

[1] 1234

Number "chopping" with 10s

44 / 62

Number "chopping" with 10s
%% returns everything to the right ("chop" ->)

%/% returns everything to the left (<- "chop")

The "chop" point is always just to the right of the chopping digit:

Example “Chop” point “Chop” point description

1234 %% 1 1234 | Right of the 1’s digit

1234 %% 10 123 | 4 Right of the 10’s digit

1234 %% 100 12 | 34 Right of the 100’s digit

1234 %% 1000 1 | 234 Right of the 1,000’s digit

1234 %% 10000 | 1234 Right of the 10,000’s digit
45 / 62

Compare if condition is TRUE or
FALSE using:

Less than: <

Less than or equal to : <=

Greater than or equal to: >=

Greater than: >

Equal: ==

Not equal: !=

2 < 2

[1] FALSE

2 <= 2

[1] TRUE

(2 + 2) == 4

[1] TRUE

(2 + 2) != 4

[1] FALSE

"penguin" == "penguin"

[1] TRUE

Comparing things: Relational operators

46 / 62

Make multiple comparisons with:

And: &

Or: |

Not: !

With "and" (&), every part must be TRUE,
otherwise the whole statement is FALSE:

(2 == 2) & (3 == 3)

[1] TRUE

(2 == 2) & (2 == 3)

[1] FALSE

Comparing things: Logical operators

47 / 62

Make multiple comparisons with:

And: &

Or: |

Not: !

With "or" (|), if any part is TRUE, the whole
statement is TRUE:

(2 == 2) | (3 == 3)

[1] TRUE

(2 == 2) | (2 == 3)

[1] TRUE

Comparing things: Logical operators

48 / 62

Make multiple comparisons with:

And: &

Or: |

Not: !

The "not" (!) symbol produces the opposite
statement:

! (2 == 2)

[1] FALSE

! ((2 == 2) | (2 == 3))

[1] FALSE

Comparing things: Logical operators

49 / 62

And: &

"Are any of the statements
FALSE"?

(2 == 2) & (2 == 3) & (4 == 4)

[1] FALSE

Or: |

"Are any of the statements
TRUE"?

(2 == 2) | (2 == 3) | (4 == 7)

[1] TRUE

& > |

The & operator takes
precedence over |

(2 == 2) | (2 == 3) & (4 == 7)

[1] TRUE

Comparing things: Logical operators

50 / 62

Pro tip: Use parentheses

!3 == 5 # Confusing

[1] TRUE

!(3 == 5) # Less confusing

[1] TRUE

Comparing things: Logical operators

51 / 62

R follows BEDMAS:

1. Brackets

2. Exponents

3. Division

4. Multiplication

5. Addition

6. Subtraction

Pro tip: Use parentheses

1 + 2 * 4 # Confusing

[1] 9

1 + (2 * 4) # Less confusing

[1] 9

Other important points

52 / 62

Your turnYour turn
Consider the following objects:Consider the following objects:

w <- w <- TRUETRUE
x <- x <- FALSEFALSE
y <- y <- TRUETRUE

Write code to answer the following questions:Write code to answer the following questions:

1. Fill in Fill in relationalrelational operators to make the following statement return operators to make the following statement return TRUETRUE::

! (w __ x) & ! (y __ x)! (w __ x) & ! (y __ x)

2. Fill in Fill in logicallogical operators to make this statement return operators to make this statement return FALSEFALSE::

! (w __ x) | (y __ x)! (w __ x) | (y __ x)

1010::0000

53 / 6253 / 62

Data Types
Type Description Example

double Numbers w/decimals (aka "float") 3.14

integer Numbers w/out decimals 42

character Text (aka "string") "this is some text"

logical Used for comparing objects TRUE, FALSE

Use typeof() to assess the type of any variable:

typeof("hello")

[1] "character"

54 / 62

Integers
No decimals (e.g. 7)

Doubles (aka "float")
Decimals (e.g. 7.0)

Numeric types (there are 2)

55 / 62

In R, numbers are "doubles" by default
 Example:

typeof(3)

[1] "double"

Even though it looks like an integer, R assumes that 3 is really 3.0

Make it an integer by adding L:

typeof(3L)

[1] "integer"

56 / 62

Character types
Use single or double quotes around anything:

typeof('hello')

[1] "character"

typeof("3")

[1] "character"

Use single / double quotes if the string contains a quote symbol:

typeof("don't")

[1] "character"

57 / 62

Logical data only have two values:
TRUE or FALSE

typeof(TRUE)

[1] "logical"

typeof(FALSE)

[1] "logical"

Note that these have to be in all caps,
and not in quotes:

typeof('TRUE')

[1] "character"

typeof(True)

Logical types

Error in typeof(True): object 'True' not found

58 / 62

Logical types
Use to answer questions about logical statements.

Example: Is 1 greater than 2?

1 > 2

[1] FALSE

 Example: Is 2 greater than 1?

1 < 2

[1] TRUE

59 / 62

Special values
Infinity: Inf
really big
numbers

1/0

[1] Inf

Not a Number:
NaN
"not a number"

0/0

[1] NaN

Not available: NA
value is "missing"

No value: NULL
no value
whatsoever

60 / 62

Your turnYour turn
Will these return Will these return TRUETRUE or or FALSEFALSE??

(try to answer first, then run the code to check)(try to answer first, then run the code to check)
! typeof('3') == typeof(3)! typeof('3') == typeof(3)

(typeof(7) != typeof("FALSE")) | FALSE(typeof(7) != typeof("FALSE")) | FALSE

! (typeof(TRUE) == typeof(FALSE)) & FALSE! (typeof(TRUE) == typeof(FALSE)) & FALSE

0505::0000

61 / 6261 / 62

Final points

1) HW 1 Preview

 Read carefully!

2) Please take this survey

62 / 62

https://p4a.seas.gwu.edu/2020-Fall/hw1-getting-started.html
https://p4aintrosurvey.formr.org/

