Week 9: Tntro to Python @

EMSE 4574: Intro to Programming for Analytics

e ot John Paul Helveston

October 27, 2020

Week 9: Iniro to Python @
1. Getting started

2. Python basics

3. Functions & methods

4. Loops & lists

5. Strings

2/ 54

Week 9: Iniro to Python @
1. Getting started

2. Python basics

3. Functions & methods

4. Loops & lists

5. Strings

3/ 54

Why Python?

Fraction of total queries in the year

Fraction of total questions per year in Stack Overflow

for top programming languages

12.5%
10.0%
7.5%

5.0%

2.5% / r
0.0%.___—___.—-—_—/—

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

image source

4 /54

https://towardsdatascience.com/predicting-the-future-popularity-of-programming-languages-4f28c80bd36f

] i d?

e

B
DATA ANALYSIS

5/ 54

Install the reticulate library

[install.packages(“reticulate")

(Only do this once)

Load the reticulate library

[library(reticulate)

(Do this every time you use the package)

6/ 54

Do you have Python on your computer?

If note, you may see the following message pop up:

[Would you like to install Miniconda? [Y/n]:

My recommendation: type y and press enter

7/ 54

Starting Python

Open a Python REPL ("Read-Eval-Print-Loop"):

[repl_python()

You should see the >>> symbol in the console. This means you're now using Python!
(Remember, the R console has only one > symbol).

You want to use Python 3, not Python 2

Above the >>> symbols, it should say “"Python 3...."

8/ 54

Exiting Python (but we just got started?)

If you want to get back to good 'ol R, just type the command exit into the Python console:

[exit

(Note that you type exit and not exit () with parentheses).

9/ 54

Open a Python script

File --> New File --> Python Script

When you run code from a Python script, R automatically opens a Python REPL

10 / 54

Week 9: Iniro to Python @
1. Getting started

2. Python basics

3. Functions & methods

4. Loops & lists

5. Strings

11/ 54

Operators

Arithmetic operators

Logical operators

Operator R Python Operator R Python
Integer division %/% // And & and; &
Modulus %% % Or | or; |
Powers ~ >k Not ! not; !

You can do this in Python:

(3 == 3) and (4 == 4)

12 / 54

Variable assignment

Python only uses the = symbol to make assignments (no <-):

value = 3
value

3

13/ 54

Data types

Same data types as R, but with more "Computer Science-y" names:

Description R Python
numeric (w/decimal) double float
integer integer int
character character str
logical logical bool

14 / 54

Data types

Three important distinctions:

Data type R Python

Logical TRUE or FALSE Trueor False

Numbers doub le by default int by default (unless has decimal)
Nothing NULL None

15/ 54

R: Get type with typeof () Python: Get type with type()

[typeof 3.14)] [type 3.14)]
[typeof(3L)] [type]
[typeof("B")] [type("3")]
[typeof(TRUE)] [type(True)]

16 / 54

R: Check type with is.type() Python: Check type with type() == type

[15 double(3.14)] [type 3.14) == float]
[15 integer(3L)] [type == int]
[is.character(”3“)] [type(”3") == str]
[is.logical(TRUE)] [type(True) == bool]

17/ 54

R: Convert type with as. type() Python: Convert type with type()

[as.double("B")] [ﬂoat("3")]
[as integer(3.14)] [1nt 3.14)]
CE
[as character(3.14)] [str 3.14)]
[as logical(3.14)] [bool (3.14)]

18 /54

Quick practice 02:00

Write Python code to do the following:

1. Create an object x that stores the value "123"
2. Create an object y that is x converted to an integer
3. Write code to confirm that y is indeed an integer

4. Write a logical statement to determine if y is odd or even

19 /54

Week 9: Iniro to Python @
1. Getting started

2. Python basics

3. Functions & methods

4. Loops & lists

5. Strings

20 /54

Python and R have many similar functions

R Python
[abs] [abs]
CI
[round(B 14)] [round (3.14)]
CE
[round(3 14, 1)] [round 3.14, 1)]

[1] 3.1 ## 3.1

21/ 54

Writing functions

R Python
isEven <- function(n) { def isEven(n):
if (n %% 2 == 0) { if (n %2 == 0):
return(TRUE) return(True)
} return(False)
return(FALSE) :
}
~ Note:

e Functions start with def
e Use : and indentation instead of { }

e Indentation is precisely 4 spaces!
22 /54

Writing test functions

R

Python

test_isEven <- function() {
cat("Testing isEven(n).

stopifnot(isEven(2) ==
stopifnot(isEven(1) ==
cat("Passed!")

.])
TRUE)
FALSE)

def test_isEven():

print("Testing isEven(n)...")
assert(isEven(2) == True)
assert(isEven(1l) == False)
print("Passed!")

Note:

e Useprint() instead of cat()

e Useassert() instead of stopifnot()

23/ 54

Python Methods

Python objects have "methods" - special functions that belong to certain object classes.

R Python
Use str_to_upper() function Use upper () method
s <- "foo" s = "foo"
stringr::str_to_upper(s) s.upper()

[1] "FOO" ## 'FOO'

24 / 54

Python Methods

See all the available methods with dir function:

[' _add__ ', ' class__ ', ' contains__', ' delattr__', ' dir__ "',

_eq__', '_format__"', '_qge__', '__getattribute__"', '__getitem__"',
__getnewargs__"', '_gt ', ' _hash__', ' __init__ ', '__init_subclass__"',
__iter_ ', ' _1le ', ' 1len_', ' 1t_', ' mod__', ' mul_', ' ne_ "',
_new__', ' reduce__"', ' __reduce_ex__"', '_repr__', ' _rmod__"', '_rmul__",
__setattr__"', '__sizeof__"', '__str__"', '__subclasshook__"', 'capitalize',
‘casefold', 'center', 'count', 'encode', ‘'endswith', 'expandtabs', 'find’,
‘format', 'format_map', 'index', ‘'isalnum', 'isalpha', 'isdecimal', 'isdigit’,
‘isidentifier', 'islower', ‘'isnumeric', 'isprintable', 'isspace', 'istitle’,
"isupper', 'join', 'ljust', 'lower', 'lstrip', 'maketrans', 'partition',
‘replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip',
‘split', 'splitlines', ‘'startswith', 'strip', 'swapcase', 'title', 'translate’,
"upper', 'zfill']

R-Python magic
You can source a Python script from R, then use the Python function in R!

Inside your notes. py file, you have the following function defined:

def isEven(n):

if (n %2 == 0):

return(True)
return(False)

Open your notes.R file and source the note. py file:

reticulate::source_python('notes.py"')

Magically, the function isEven(n) now works inside R!
26 / 54

Think-Pair-Share [15 : @@J

Write the following two functions in Python code:

1. hypotenuse(a, b):Returnsthe hypotenuse of the two lines of length a and b.

2. 1sRightTriangle(a, b, c):Returns True if the triangle formed by the lines of
length a, b, and c is a right triangle and Fa Lse otherwise. Hint: you may not know which
value (a, b, or) is the hypotenuse.

27 /54

Week 9: Iniro to Python @
1. Getting started

2. Python basics

3. Functions & methods

4. Loops & lists

5. Strings

28 / 54

for loops

R Python

for (i in seq(1, 5, 2)) {
cat(i, '\n')
}

for i in range(1, 5, 2):
print(i)

1

|
3

3

5

Notes:

e range() leaves out stopping number

e No () in for loop line

29 / 54

while loops

R Python
i<-1 i=1
while (i <= 5) { while i <= 5:
print(i) print(i)
1 <—-1+ 2 1 += 2
Iy

1
[1] 1 ## 3

[1] 3 ## 5
[1] 5

Notes:

e Couldalsousel = 1 + 2toincrement

e No () inwhile loop line 30/ 54

Python lists

Note: These are not the same as R vectors! (They're equivalent to R lists)

Universal list creator: []

~—

11, 2, 31

[1, 2, 3]

Lists can store different types

~——

[[1, "foo", Truel]

[1, 'foo', Truel

31/ 54

Adding and removing items

Add items with list.append() Remove items with 1ist. remove()

X = [1r 21 3]
X.remove(3)
X

X = [17 21 3]
X.append(7)
X

[1, 2, 3, 7] ## [1, 2]

Note: You don't have to overright a,
i.e. Don't do this: x = x.append(7)

32 /54

Sorting lists

[x = [1, 5, 3]

Sorting that returns a new object Sort the object x without creating a new
object
[sorted(x)]
x.sort()
[1; 3; 5] X]

sorted(x, reverse = True)

)
~——

[1, 3, 5]

[5, 3, 1]

X

| S
——

33/ 54

Slicing lists with []

[x = ['A'", 'list', 'of', 'words']]
Indices start at O: Slicing with a vector of indices:
[x[@] # Returns the first element] {x[@:B] # Returns the first 3 elements]

1A, List, or]

[x[3] # Returns the third element]

[x[len(x)—l] # Returns the last element]

Negative indices slice from the end

[x = ['A'", 'list', 'of', 'words']]
Indices start at O: Slicing with a vector of indices:
[x[—l] # Returns the last element] [x[—3:—1] # Returns middle 2 elements]

[x[—Z] # Returns 2nd-to-last element]

[x[—len(x)] # Returns first element]

Note on 0 indexing

[X — [IIAII’ IIBII’ IICII’ IIDII’ IIEII]

List items sit between fence posts.

index: 0 1 2
| |
| |
| |

3 4
| |
| |
| |

| |
item: | ||A|| ||B|| ||C|| ||D|| "E“ |
| |

You slice at the fence post number to get elements between the posts.

| x[0:1] | [xto:3:

A, B,

Think-Pair-Share [15 : @@J

Write the following two functions in Python code:

1. factorial(n): Returns the factorial of n,e.g. 3! = 3%2x1 = 6.NotethatQisa
special case,and 0! = 1. Assumen >= 0.

2. nthHighestValue(n, x):Returnsthe nth highest valuein a list of numbers. For
example,if x = [5, 1, 3],thennthHighestValue(1l, x) shouldreturn5,
because 5 is the 1st highest value in x, and nthHighestValue(2, x) should return 3
because it's the 2nd highest value in x. Assume thatn <= len(x).

37/ 54

‘Break

05:00

J/
38 /54

Week 9: Iniro to Python @
1. Getting started

2. Python basics

3. Functions & methods

4. Loops & lists

5. Strings

39/ 54

Doing "math" with strings

Concatenation:

R Python
[paste(”foo”, "bar", sep = "")] [“foo" + "bar"]
Repetition:

R Python
[str_dup(“foo", 3)] [“foo

[1] "foofoofoo" ## 'foofoofoo'

Using English with strings

Sub-string detection:
R Python

[str_detect('Apple', 'App')] ['App' in 'Apple’]

41/ 54

Most string manipulation is done with methods

R Python

42 / 54

Case conversion

R Python

s <— "A longer string"

s = "A longer string"
str_to_upper(s)

s.upper()

[1] "A LONGER STRING" ## 'A LONGER STRING'

[str_to_lower(s)] [s.lower()]

[1] "a longer string" ## 'a longer string’

[str_to_title(s)] [s.title()]

[1] "A Longer String" ## 'A Longer String'

43 /54

Trimming white space

R Python

S <— S = A string with space !]

str_trim(s)

[1] "A string with space" ## 'A string with space’

A string with space
s.strip()

44 / 54

Replacing strings

R Python

s <—- "Hello world"
str_replace(s, "o", "a")

[1] "Hella world" ## 'Hella warld'

s.replace("o", "a")

s = "Hello world"]

[str_replace_all(s, "o", "a")]

[1] "Hella warld"

45 / 54

Merge a vector / list of strings together

R Python

s <— c("Hello", "world")
paste(s, collapse = "")

[1] "Helloworld" ## 'Helloworld’

s = ["Hello", "world"]
""", join(s)

46 / 54

Python has some super handy string methods

Detect if string contains only numbers:

R Python

R doesn't have a function for this...

here's one way to do it: s = a2t]

s.isnumeric()

5 <— ||42||
I is.na(as.numeric(s))

[1] TRUE

47 / 54

Getting sub-strings with []

R Python
s <- "Apple"] s = "Apple"]
str_sub(s, 1, 3) s[0:3]
Notes:

e Indexing is the same as lists

48 / 54

Getting sub-string indices

R Python

S <— IIApp'LeII

str_locate(s, "pp") s.index("pp")

s = "Apple"]

start end ## 1

[1,] 2 3

Note:

e Only returns the starting index

49 / 54

String splitting

Both languages return a list:

R Python

s <— "Apple"
str_split(s, "pp")

s = "Apple"
s.split("pp")

[1] IIAII II'LeII

50/ 54

Python can only split individual strings

R can split vectors of strings Python

s = ["Apple", "Snapple"]

s <— c("Apple", "Snapple")
s.split("pp")

str_split(s, "pp")

[[1]] ## Error in py_call_impl(callable,

[1] "A"™ "le" dots$args, dots$keywords):
AttributeError: 'list' object has no

[[2]] attribute 'split’
[1] IISnaII Il'l-ell

51/54

Need numpy package for this in Python

import numpy as np

s = np.array(["Apple", "Snapple"])
np.char.split(s, "pp")

array([list(['A', 'le'l), list(['Sna', 'le'l)], dtype=object)

52 /54

Think-Pair-Share [15 : @@J

Write the following two functions in Python code:

1. sortString(s): Takes a string s and returns back an alphabetically sorted string. Hint: Use 1list(s) to
break a string into a list of letters.

e sortString("cba") == "abc"
e sortString("abedhg") == "abdegh"
e sortString("AbacBc") == "ABabcc"

1. areAnagrams(sl, s2):Takestwo strings, s1 and s2, and returns True if the strings are anagrams, and
False otherwise. Treat lower and upper case as the same letters.

e areAnagrams("", "") == True

 areAnagrams("aabbccdd", "bbccddee") == False

e areAnagrams("TomMarvoloRiddle", "IAmLordVoldemort") == True 53 / 54

https://en.wikipedia.org/wiki/Anagram

HW 8

| suggest starting with reticulate::repl_python() to work in Python from RStudio.

e Submit your "hw8.py" file to the autograder - it will (hopefully) work

54 / 54

https://p4a.seas.gwu.edu/2020-Fall/hw8-python.html

