
Week 10: Week 10: Data FramesData Frames
 EMSE 4571 / 6571: Intro to Programming for EMSE 4571 / 6571: Intro to Programming for

AnalyticsAnalytics

 John Paul Helveston John Paul Helveston

 March 21, 2024 March 21, 2024

1 / 601 / 60



HW Change
HWs are now due by midnight on Tuesday night

(not Wednesday night)

2 / 60



The Challenger disaster
On January 28, 1986 the space shuttle Challenger exploded

3 / 60



The Challenger disaster
NASA Engineers had the data on temperature & o-ring failure

4 / 60



What NASA was
shown

Tufte, Edward R. (1997)
Visual Explanations: Images
and Quantities, Evidence and
Narrative, Graphics Press,
Cheshire, Connecticut.

5 / 60



What NASA should have been shown

Tufte, Edward R. (1997) Visual Explanations: Images and Quantities,
Evidence and Narrative, Graphics Press, Cheshire, Connecticut.

6 / 60



"The purpose of computing
is insight, not numbers"

- Richard Hamming

7 / 60

https://en.wikipedia.org/wiki/Richard_Hamming


Before we start
Make sure you have these packages installed and loaded:

install.packages("stringr")
install.packages("dplyr")
install.packages("ggplot2")
install.packages("readr")
install.packages("here")

(At the top of the practice.R file)

Remember: you only need to install them once!

8 / 60



Week 10: Week 10: Data FramesData Frames
1. Basics1. Basics

2. Slicing2. Slicing

BREAKBREAK

3. External data3. External data

9 / 609 / 60



Week 10: Week 10: Data FramesData Frames
1. 1. BasicsBasics

2. Slicing2. Slicing

BREAKBREAK

3. External data3. External data

10 / 6010 / 60



The data frame...in Excel

11 / 60



The data frame...in R
beatles <- tibble(
    firstName   = c("John", "Paul", "Ringo", "George"),
    lastName    = c("Lennon", "McCartney", "Starr", "Harrison"),
    instrument  = c("guitar", "bass", "drums", "guitar"),
    yearOfBirth = c(1940, 1942, 1940, 1943),
    deceased    = c(TRUE, FALSE, FALSE, TRUE)
)

beatles

#> # A tibble: 4 × 5
#>   firstName lastName  instrument yearOfBirth deceased
#>   <chr>     <chr>     <chr>            <dbl> <lgl>   
#> 1 John      Lennon    guitar            1940 TRUE    
#> 2 Paul      McCartney bass              1942 FALSE   
#> 3 Ringo     Starr     drums             1940 FALSE   
#> 4 George    Harrison  guitar            1943 TRUE

12 / 60



View(beatles)

The data frame...in RStudio

13 / 60



Columns: Vectors of values (must be same data type)

beatles

#> # A tibble: 4 × 5
#>   firstName lastName  instrument yearOfBirth deceased
#>   <chr>     <chr>     <chr>            <dbl> <lgl>   
#> 1 John      Lennon    guitar            1940 TRUE    
#> 2 Paul      McCartney bass              1942 FALSE   
#> 3 Ringo     Starr     drums             1940 FALSE   
#> 4 George    Harrison  guitar            1943 TRUE

Extract a column using $

beatles$firstName

#> [1] "John"   "Paul"   "Ringo"  "George"

14 / 60



Rows: Information about individual observations
Information about John Lennon is in the first row:

beatles[1,]

#> # A tibble: 1 × 5
#>   firstName lastName instrument yearOfBirth deceased
#>   <chr>     <chr>    <chr>            <dbl> <lgl>   
#> 1 John      Lennon   guitar            1940 TRUE

Information about Paul McCartney is in the second row:

beatles[2,]

#> # A tibble: 1 × 5
#>   firstName lastName  instrument yearOfBirth deceased
#>   <chr>     <chr>     <chr>            <dbl> <lgl>   
#> 1 Paul      McCartney bass              1942 FALSE

15 / 60



Make a data frame with data.frame()
beatles <- data.frame(
    firstName   = c("John", "Paul", "Ringo", "George"),
    lastName    = c("Lennon", "McCartney", "Starr", "Harrison"),
    instrument  = c("guitar", "bass", "drums", "guitar"),
    yearOfBirth = c(1940, 1942, 1940, 1943),
    deceased    = c(TRUE, FALSE, FALSE, TRUE)
)

beatles

#>   firstName  lastName instrument yearOfBirth deceased
#> 1      John    Lennon     guitar        1940     TRUE
#> 2      Paul McCartney       bass        1942    FALSE
#> 3     Ringo     Starr      drums        1940    FALSE
#> 4    George  Harrison     guitar        1943     TRUE

16 / 60



Make a data frame with tibble()
library(dplyr)

beatles <- tibble(
    firstName   = c("John", "Paul", "Ringo", "George"),
    lastName    = c("Lennon", "McCartney", "Starr", "Harrison"),
    instrument  = c("guitar", "bass", "drums", "guitar"),
    yearOfBirth = c(1940, 1942, 1940, 1943),
    deceased    = c(TRUE, FALSE, FALSE, TRUE)
)

beatles

#> # A tibble: 4 × 5
#>   firstName lastName  instrument yearOfBirth deceased
#>   <chr>     <chr>     <chr>            <dbl> <lgl>   
#> 1 John      Lennon    guitar            1940 TRUE    
#> 2 Paul      McCartney bass              1942 FALSE   
#> 3 Ringo     Starr     drums             1940 FALSE   
#> 4 George    Harrison  guitar            1943 TRUE

17 / 60



Why I use tibble() instead of data.frame()
1. The tibble() shows the dimensions and data type.

2. A tibble will only print the first few rows of data when you enter the object name
Example: faithful vs. as_tibble(faithful)

3. Columns of class character are never converted into factors (don't worry about
this for now...just know that tibbles make life easier with strings).

Note: I use the word "data frame" to refer to both tibble() and data.frame()
objects

18 / 60



Data frame vectors must have the same length

beatles <- tibble(
    firstName   = c("John", "Paul", "Ringo", "George", "Bob"), # Added "Bob"
    lastName    = c("Lennon", "McCartney", "Starr", "Harrison"),
    instrument  = c("guitar", "bass", "drums", "guitar"),
    yearOfBirth = c(1940, 1942, 1940, 1943),
    deceased    = c(TRUE, FALSE, FALSE, TRUE)
)

#> Error in `tibble()`:
#> ! Tibble columns must have compatible sizes.
#> • Size 5: Existing data.
#> • Size 4: Column `lastName`.
#> ℹ Only values of size one are recycled.

19 / 60



Use NA for missing values

beatles <- tibble(
    firstName   = c("John", "Paul", "Ringo", "George", "Bob"), 
    lastName    = c("Lennon", "McCartney", "Starr", "Harrison", NA), # Added NAs
    instrument  = c("guitar", "bass", "drums", "guitar", NA),
    yearOfBirth = c(1940, 1942, 1940, 1943, NA),
    deceased    = c(TRUE, FALSE, FALSE, TRUE, NA)
)

beatles

#> # A tibble: 5 × 5
#>   firstName lastName  instrument yearOfBirth deceased
#>   <chr>     <chr>     <chr>            <dbl> <lgl>   
#> 1 John      Lennon    guitar            1940 TRUE    
#> 2 Paul      McCartney bass              1942 FALSE   
#> 3 Ringo     Starr     drums             1940 FALSE   
#> 4 George    Harrison  guitar            1943 TRUE    
#> 5 Bob       <NA>      <NA>                NA NA

20 / 60



Dimensions: nrow(), ncol(), & dim()
nrow(beatles) # Number of rows

#> [1] 5

ncol(beatles) # Number of columns

#> [1] 5

dim(beatles)  # Number of rows and columns

#> [1] 5 5

21 / 60



Use names() or colnames() to see the available variables

Get the names of columns:

names(beatles) # Usually just use this

#> [1] "firstName"   "lastName"    "instrument"  "yearOfBirth" "deceased"

colnames(beatles)

#> [1] "firstName"   "lastName"    "instrument"  "yearOfBirth" "deceased"

Get the names of rows (rarely needed):

rownames(beatles)

#> [1] "1" "2" "3" "4" "5"

22 / 60



Changing the column names
Change the column names with names() or colnames():

names(beatles) <- c('one', 'two', 'three', 'four', 'five')
beatles

#> # A tibble: 5 × 5
#>   one    two       three   four five 
#>   <chr>  <chr>     <chr>  <dbl> <lgl>
#> 1 John   Lennon    guitar  1940 TRUE 
#> 2 Paul   McCartney bass    1942 FALSE
#> 3 Ringo  Starr     drums   1940 FALSE
#> 4 George Harrison  guitar  1943 TRUE 
#> 5 Bob    <NA>      <NA>      NA NA

23 / 60



Changing the column names
Make all the column names upper-case:

colnames(beatles) <- stringr::str_to_upper(colnames(beatles))
beatles

#> # A tibble: 5 × 5
#>   FIRSTNAME LASTNAME  INSTRUMENT YEAROFBIRTH DECEASED
#>   <chr>     <chr>     <chr>            <dbl> <lgl>   
#> 1 John      Lennon    guitar            1940 TRUE    
#> 2 Paul      McCartney bass              1942 FALSE   
#> 3 Ringo     Starr     drums             1940 FALSE   
#> 4 George    Harrison  guitar            1943 TRUE    
#> 5 Bob       <NA>      <NA>                NA NA

24 / 60



Combine data frames by columns using bind_cols()
Note: bind_cols() is from the dplyr library

names <- tibble(
    firstName = c("John", "Paul", "Ringo", "George"),
    lastName  = c("Lennon", "McCartney", "Starr", "Harrison"))

instruments <- tibble(
    instrument = c("guitar", "bass", "drums", "guitar"))

bind_cols(names, instruments)

#> # A tibble: 4 × 3
#>   firstName lastName  instrument
#>   <chr>     <chr>     <chr>     
#> 1 John      Lennon    guitar    
#> 2 Paul      McCartney bass      
#> 3 Ringo     Starr     drums     
#> 4 George    Harrison  guitar

25 / 60



Combine data frames by rows using bind_rows()
Note: bind_rows() is from the dplyr library

members1 <- tibble(
    firstName = c("John", "Paul"),
    lastName  = c("Lennon", "McCartney"))

members2 <- tibble(
    firstName = c("Ringo", "George"),
    lastName  = c("Starr", "Harrison"))

bind_rows(members1, members2)

#> # A tibble: 4 × 2
#>   firstName lastName 
#>   <chr>     <chr>    
#> 1 John      Lennon   
#> 2 Paul      McCartney
#> 3 Ringo     Starr    
#> 4 George    Harrison

26 / 60



Note: bind_rows() requires the same columns names:

colnames(members2) <- c("firstName", "LastName")
bind_rows(members1, members2)

#> # A tibble: 4 × 3
#>   firstName lastName  LastName
#>   <chr>     <chr>     <chr>   
#> 1 John      Lennon    <NA>    
#> 2 Paul      McCartney <NA>    
#> 3 Ringo     <NA>      Starr   
#> 4 George    <NA>      Harrison

Note how <NA>s were created

27 / 60



Your turnYour turn
Answer these questions using the Answer these questions using the animals_farmanimals_farm and  and animals_petanimals_pet data frames: data frames:

1. 1. Write code to find how many Write code to find how many rowsrows are in the  are in the animals_farmanimals_farm data frame? data frame?
2. 2. Write code to find how many Write code to find how many columnscolumns are in the  are in the animals_petanimals_pet data frame? data frame?
3. 3. Create a new data frame, Create a new data frame, animalsanimals, by combining , by combining animals_farmanimals_farm and and

animals_petanimals_pet..
4. 4. Change the column names of Change the column names of animalsanimals to title case. to title case.
5. 5. Add a new column to Add a new column to animalsanimals called  called typetype that tells if an animal is a  that tells if an animal is a "farm""farm" or or

"pet""pet" animal. animal.

28 / 6028 / 60

0606::0000



Week 10: Week 10: Data FramesData Frames
1. Basics1. Basics

2. 2. SlicingSlicing

BREAKBREAK

3. External data3. External data

29 / 6029 / 60



Access data frame columns using the $ symbol

beatles$firstName

#> [1] "John"   "Paul"   "Ringo"  "George"

beatles$lastName

#> [1] "Lennon"    "McCartney" "Starr"     "Harrison"

30 / 60



Creating new variables with the $ symbol
Add the hometown of the bandmembers:

beatles$hometown <- 'Liverpool'
beatles

#> # A tibble: 4 × 6
#>   firstName lastName  instrument yearOfBirth deceased hometown 
#>   <chr>     <chr>     <chr>            <dbl> <lgl>    <chr>    
#> 1 John      Lennon    guitar            1940 TRUE     Liverpool
#> 2 Paul      McCartney bass              1942 FALSE    Liverpool
#> 3 Ringo     Starr     drums             1940 FALSE    Liverpool
#> 4 George    Harrison  guitar            1943 TRUE     Liverpool

31 / 60



Creating new variables with the $ symbol
Add a new alive variable:

beatles$alive <- c(FALSE, TRUE, TRUE, FALSE)
beatles

#> # A tibble: 4 × 7
#>   firstName lastName  instrument yearOfBirth deceased hometown  alive
#>   <chr>     <chr>     <chr>            <dbl> <lgl>    <chr>     <lgl>
#> 1 John      Lennon    guitar            1940 TRUE     Liverpool FALSE
#> 2 Paul      McCartney bass              1942 FALSE    Liverpool TRUE 
#> 3 Ringo     Starr     drums             1940 FALSE    Liverpool TRUE 
#> 4 George    Harrison  guitar            1943 TRUE     Liverpool FALSE

32 / 60



You can compute new variables from current ones
Compute and add the age of the bandmembers:

beatles$age <- 2023 - beatles$yearOfBirth
beatles

#> # A tibble: 4 × 8
#>   firstName lastName  instrument yearOfBirth deceased hometown  alive   age
#>   <chr>     <chr>     <chr>            <dbl> <lgl>    <chr>     <lgl> <dbl>
#> 1 John      Lennon    guitar            1940 TRUE     Liverpool FALSE    83
#> 2 Paul      McCartney bass              1942 FALSE    Liverpool TRUE     81
#> 3 Ringo     Starr     drums             1940 FALSE    Liverpool TRUE     83
#> 4 George    Harrison  guitar            1943 TRUE     Liverpool FALSE    80

33 / 60



Select the element in row 1, column 2:

beatles[1, 2]

#> # A tibble: 1 × 1
#>   lastName
#>   <chr>   
#> 1 Lennon

Select the elements in rows 1 & 2 and
columns 2 & 3:

beatles[c(1, 2), c(2, 3)]

#> # A tibble: 2 × 2
#>   lastName  instrument
#>   <chr>     <chr>     
#> 1 Lennon    guitar    
#> 2 McCartney bass

Access elements by index: df[row, column]
General form for indexing elements:

df[row, column]

34 / 60



Leave row or column "blank" to select all

beatles[c(1, 2),] # Selects all COLUMNS for rows 1 & 2

#> # A tibble: 2 × 5
#>   firstName lastName  instrument yearOfBirth deceased
#>   <chr>     <chr>     <chr>            <dbl> <lgl>   
#> 1 John      Lennon    guitar            1940 TRUE    
#> 2 Paul      McCartney bass              1942 FALSE

beatles[,c(1, 2)] # Selects all ROWS for columns 1 & 2

#> # A tibble: 4 × 2
#>   firstName lastName 
#>   <chr>     <chr>    
#> 1 John      Lennon   
#> 2 Paul      McCartney
#> 3 Ringo     Starr    
#> 4 George    Harrison

35 / 60



Negative indices exclude row / column

beatles[-1, ] # Select all ROWS except the first

#> # A tibble: 3 × 5
#>   firstName lastName  instrument yearOfBirth deceased
#>   <chr>     <chr>     <chr>            <dbl> <lgl>   
#> 1 Paul      McCartney bass              1942 FALSE   
#> 2 Ringo     Starr     drums             1940 FALSE   
#> 3 George    Harrison  guitar            1943 TRUE

beatles[,-1] # Select all COLUMNS except the first

#> # A tibble: 4 × 4
#>   lastName  instrument yearOfBirth deceased
#>   <chr>     <chr>            <dbl> <lgl>   
#> 1 Lennon    guitar            1940 TRUE    
#> 2 McCartney bass              1942 FALSE   
#> 3 Starr     drums             1940 FALSE   
#> 4 Harrison  guitar            1943 TRUE

36 / 60



One column

beatles['firstName']

#> # A tibble: 4 × 1
#>   firstName
#>   <chr>    
#> 1 John     
#> 2 Paul     
#> 3 Ringo    
#> 4 George

beatles[c('firstName', 'lastName')]

#> # A tibble: 4 × 2
#>   firstName lastName 
#>   <chr>     <chr>    
#> 1 John      Lennon   
#> 2 Paul      McCartney
#> 3 Ringo     Starr    
#> 4 George    Harrison

You can select columns by their names
Note: you don't need the comma to select an entire column

Multiple columns

37 / 60



Use logical indices to filter rows
Which Beatles members are still alive?
Create a logical vector using the deceased column:

beatles$deceased == FALSE

#> [1] FALSE  TRUE  TRUE FALSE

Insert this logical vector in the ROW position of beatles[,]:

beatles[beatles$deceased == FALSE,]

#> # A tibble: 2 × 5
#>   firstName lastName  instrument yearOfBirth deceased
#>   <chr>     <chr>     <chr>            <dbl> <lgl>   
#> 1 Paul      McCartney bass              1942 FALSE   
#> 2 Ringo     Starr     drums             1940 FALSE

38 / 60



Your turnYour turn
Answer these questions using the Answer these questions using the beatlesbeatles data frame: data frame:

1. 1. Create a new column, Create a new column, playsGuitarplaysGuitar, which is , which is TRUETRUE if the band member plays the if the band member plays the
guitar and guitar and FALSEFALSE otherwise. otherwise.

2. 2. Filter the data frame to select only the rows for the band members who have four-Filter the data frame to select only the rows for the band members who have four-
letter first names.letter first names.

3. 3. Create a new column, Create a new column, fullNamefullName, which contains the band member's first and last, which contains the band member's first and last
name separated by a space (e.g. name separated by a space (e.g. "John Lennon""John Lennon"))

39 / 6039 / 60

1010::0000



IntermissionIntermission

40 / 6040 / 60

0505::0000



Week 10: Week 10: Data FramesData Frames
1. Basics1. Basics

2. Slicing2. Slicing

BREAKBREAK

3. 3. External dataExternal data

41 / 6041 / 60



Getting data into R

Options:

1. Load external packages

2. Read in external files (usually a .csv* file)

*csv = "comma-separated values"

42 / 60



Data from an R package

library(ggplot2)

See which data frames are available in a package:

data(package = "ggplot2")

43 / 60



Find out about package data sets with ?
?msleep

msleep {ggplot2}

An updated and expanded version of the mammals sleep dataset

Description

This is an updated and expanded version of the mammals sleep dataset. Updated sleep times 

44 / 60



Previewing data frames: msleep
Look at the data in a "spreadsheet"-like way:

View(msleep)

This is "read-only" so you can't corrupt the data 😄

45 / 60



My favorite quick summary: glimpse()
Preview each variable with str() or glimpse()

library(dplyr)

glimpse(msleep)

#> Rows: 83
#> Columns: 11
#> $ name         <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Greater short-t
#> $ genus        <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bos", "Bradyp
#> $ vore         <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi", "carni", 
#> $ order        <chr> "Carnivora", "Primates", "Rodentia", "Soricomorpha", "Artiod
#> $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", NA, "domesti
#> $ sleep_total  <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1, 3.0, 5.3, 
#> $ sleep_rem    <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0.6, 0.8, 0.7
#> $ sleep_cycle  <dbl> NA, NA, NA, 0.1333333, 0.6666667, 0.7666667, 0.3833333, NA, 
#> $ awake        <dbl> 11.90, 7.00, 9.60, 9.10, 20.00, 9.60, 15.30, 17.00, 13.90, 2
#> $ brainwt      <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0.07000, 0.09
#> $ bodywt       <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.490, 0.045, 46 / 60



View the first 6 rows with head()

head(msleep)

#> # A tibble: 6 × 11
#>   name                       genus    
#>   <chr>                      <chr>    
#> 1 Cheetah                    Acinonyx 
#> 2 Owl monkey                 Aotus    
#> 3 Mountain beaver            Aplodonti
#> 4 Greater short-tailed shrew Blarina  
#> 5 Cow                        Bos      
#> 6 Three-toed sloth           Bradypus 

View the last 6 rows with tail()

tail(msleep)

#> # A tibble: 6 × 11
#>   name                 genus    vore  
#>   <chr>                <chr>    <chr> 
#> 1 Tenrec               Tenrec   omni  
#> 2 Tree shrew           Tupaia   omni  
#> 3 Bottle-nosed dolphin Tursiops carni 
#> 4 Genet                Genetta  carni 
#> 5 Arctic fox           Vulpes   carni 
#> 6 Red fox              Vulpes   carni 

Also very useful for quick checks: head() and tail()

47 / 60



Note the data.csv file in your data folder.

DO NOT double-click it!
DO NOT open it in Excel!

Excel can corrupt your data!

(Don't believe me? read this)

If you must open it in Excel:

Make a copy
Open the copy

Importing an external data file

48 / 60

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008984


Steps to importing external data files
1. Create a path to the data

library(here)
pathToData <- here('data', 'data.csv')
pathToData

#> [1] "/Users/jhelvy/gh/teaching/P4A/2024-Spring/class/8-data-frames/data/data.csv"

2. Import the data

library(readr)
df <- read_csv(pathToData)

49 / 60



Using the here package to make file paths
The here() function builds the path to your root to your working directory
(this is where your .Rproj file lives!)

here()

#> [1] "/Users/jhelvy/gh/teaching/P4A/2024-Spring/class/8-data-frames"

The here() function builds the path to files inside your working directory

path_to_data <- here('data', 'data.csv')
path_to_data

#> [1] "/Users/jhelvy/gh/teaching/P4A/2024-Spring/class/8-data-frames/data/data.csv"

50 / 60



Avoid hard-coding file paths!
(they can break on different computers)

path_to_data <- 'data/data.csv'
path_to_data

#> [1] "data/data.csv"

💩💩💩

51 / 60



Use the here package
to make file paths

Art by Allison Horst

52 / 60

https://www.allisonhorst.com/


path_to_data <- here('data', 'data.csv')
data <- read_csv(path_to_data)

Use read_csv(), not read.csv()

53 / 60



Save data frame as csv with write_csv()
1. Create a path to where you want to save the data

library(here)
pathToData <- here('data', 'data_new.csv')
pathToData

#> [1] "/Users/jhelvy/gh/teaching/P4A/2024-Spring/class/8-data-frames/data/data_new.csv"

2. Write the file to disc

library(readr)
write_csv(data, pathToData)

54 / 60



Your turnYour turn
1) Use the 1) Use the here()here() and  and read_csv()read_csv() functions to load the  functions to load the data.csvdata.csv file that is in the  file that is in the datadata
folder. Name the data frame object folder. Name the data frame object dfdf..

2) Use the 2) Use the dfdf object to answer the following questions: object to answer the following questions:

How many rows and columns are in the data frame?How many rows and columns are in the data frame?
Preview the different columns. What do you think this data is about? What might one rowPreview the different columns. What do you think this data is about? What might one row
represent? What type of data is each column? (don't need to type this out...just inspect therepresent? What type of data is each column? (don't need to type this out...just inspect the
data)data)
How many unique airports are in the data frame?How many unique airports are in the data frame?
What is the earliest and latest observation in the data frame?What is the earliest and latest observation in the data frame?
What is the lowest and highest cost of any one repair in the data frame?What is the lowest and highest cost of any one repair in the data frame?

3) Create a subset of the data called 3) Create a subset of the data called data_dcdata_dc that contains only observations from DC-area that contains only observations from DC-area
airports (IAD, DCA, & BWI), then use airports (IAD, DCA, & BWI), then use write_csv()write_csv() to save it in your "data" folder as to save it in your "data" folder as
data_cs.csvdata_cs.csv..

55 / 6055 / 60

1010::0000



Next week: better data wrangling with dplyr

Art by Allison Horst 56 / 60

https://www.allisonhorst.com/


Select rows with filter()
Example: Filter rows to find which Beatles members are still alive?

Base R:

beatles[beatles$deceased == FALSE,]

dplyr:

filter(beatles, deceased == FALSE)

57 / 60



Translate data...

#> # A tibble: 11 × 2
#>    brainwt   bodywt
#>      <dbl>    <dbl>
#>  1 0.001      0.06 
#>  2 0.0066     1    
#>  3 0.00014    0.005
#>  4 0.0108     3.5  
#>  5 0.0123     2.95 
#>  6 0.0063     1.7  
#>  7 4.60    2547    
#>  8 0.0003     0.023
#>  9 0.655    521    
#> 10 0.419    187    
#> 11 0.0035     0.77

...into information

In 2 weeks: plotting with ggplot2

58 / 60



A note about HW 8
You have what you need to start now.
It will be much easier if you use the dplyr functions (i.e. read ahead). Feel free to
try using them on this assignment.

59 / 60

https://p4a.seas.gwu.edu/2024-Spring/hw/8-data-frames.html


Extra Practice!Extra Practice!
1. 1. Install the Install the dslabsdslabs package. package.
2. 2. Load the package with Load the package with library(dslabs)library(dslabs)
3. 3. Use Use data(package = "dslabs")data(package = "dslabs") to see the different data sets in this package. to see the different data sets in this package.
4. 4. Pick one.Pick one.
5. 5. Answer these questions about the dataset you chose:Answer these questions about the dataset you chose:

What is the dataset about?What is the dataset about?
How many observations are in the data frame?How many observations are in the data frame?
What is the original source of the data?What is the original source of the data?
What type of data is each variable?What type of data is each variable?
Find one thing interesting about it to share.Find one thing interesting about it to share.

60 / 6060 / 60

1010::0000


