Week 5: Tteration

It EMSE 4571 | 6571: Intro to Programming for
Analytics

2 John Paul Helveston

™) February 13, 2025

Quiz 4 10: 00|

Write your name on the quiz!

Rules:

e Work alone; no outside help of any
kind is allowed.

e No calculators, no notes, no books, no
computers, no phones.

Common problems in homeworks

Use all.equal() in test cases with numbers

This could fail:

[stopifnot(getTheCents(2.45) == 45)]

Instead, use:

[stopifnot(all.equal(getTheCents(Z.45), 45))]

3/29

Common problems in homeworks

Check your full script for errors

e Restart R and run your whole code from the top
* Sequence matters: Have you called a function before defining it?

4 /29

Read homework feedback on Box

Go to box.com

Search for folder named netID—p4a (e.g, jph—p4a)

5/29

https://box.com/

The tricky isNumericLooking(n) problem

6/29

Week 5: Tteration

1. for loops
2. breaking and skipping

BREAK

3. while loops

Week 5: Tteration

1. for loops
2. breaking and skipping

BREAK

3. while loops

"Flow Control"

Code that alters the otherwise linear flow of operations in a program.

Last week: This week:

e 1T statements
e clse statements

for loops

while loops
break statements
next statements

9/29

The fO r lOOp Flow chart:

Basic format:

for each item
in sequence

for (item in sequence) {

Last item
reached?

STATEMENTS
in for {}

Exit loop ¥
10 / 29

Making a sequence

(Side note: these are vectors...that's next week - read ahead!)

Two ways to make a sequence:

1. Use the seq () function 2. Use the : operator (step size = 1)
[seq(l, 10) J [1:1@]
[seq(l 10, by = 2)] 10 1

[1] 1357 9 [1] 16 9 8 7 6 5 4 3 2 1

Quick code tracing 02:00

What will this function print?

for (i in 1:5) {
if ((1 %% 2) == 0) {
cat('—-"

} else 1if ((
cat('——-"'

}

cat(i, '\n')

12 / 29

Quick code tracing 02:00

What will this function print?

n <— 6
for (i in seq(n)) {
cat('|")
for (j in seq(1, n, 2)) {
cat('x")
}

Cat(lll, |\n|)

13/ 29

Your turn [15 : @@J

1) sumFromMToN(m, n): Write a function that sums the total of the integers between m and n.
Challenge: Try solving this without a loop!

e sumFromMToN(5, 10) == (5 + 6 + 7 + 8 + 9 + 10)
e sumFromMToN(1, 1) == 1

2) sumEveryKthFromMToN(m, n, k):Write a function to sum every kth integer from m to n.

e sumEveryKthFromMToN(1, 10, 2) == (1 + 3 + 5 + 7 + 9)
e sumEveryKthFromMToN(5, 20, 7) == (5 + 12 + 19)
e sumEveryKthFromMToN(@, 0, 1) ==

3) sum0f0ddsFromMToN (m, n): Write a function that sums every odd integer between m and n.
Challenge: Try solving this without a loop!

e sum0fOddsFromMToN(4, 10) == (5 + 7 + 9)
e sum0fOddsFromMToN(5, 9) == (5 + 7 + 9)

Week 5: Tteration

1. for loops
2. breaking and skipping
BREAK

3. while loops

Breaking out of a loop

Force a loop to stop with break

Note: break doesn't require ()

for (val in 1:5) {

if (val == 3) {
break

}

cat(val, '\n')

}
1
2

16 / 29

Quick code tracing

What will this code print?

for (i in 1:3) {
cat('|")
for (j in 1:5) {
if (§j == 3) {
break
}
cat('x")
}
Cat(lll, |\n|)
}

02:00

17 29

Skipping 1terations

Skip to the next iteration in a loop with next

Note: next doesn't require ()

for (val in 1:5) {

if (val == 3) {
next

}

cat(val, '\n')

18 | 29

Quick code tracing

What will this code print?

for (i in 1:3) {
cat('|")
for (j in 1:5) {
if (§j == 3) {
next
}
cat('x")
}
Cat(lll, |\n|)
}

02:00

19/ 29

Your turn [15 : @@J

sumOfOddsFromMToNMax(m, n, max): Write a function that sums every odd integer
from m to n up until the sum is less than or equal to the value max.

Your solution must use both break and next statements.

e sum0fOddsFromMToNMax(1, 5, 4) == (1 + 3)
e sum0fOddsFromMToNMax(1, 5, 3) == (1)
e sum0fOddsFromMToNMax(1, 5, 10) == (1 + 3 + 5)

Week 5: Tteration

1. for loops Lame joke time:
2. breaking and skipping

A friend calls her programmer roommate
and said, "while you're out, buy some

BREAK milk"...

3. while loops ...She never returned home.

&

Here's the general idea:

The while loop

Enter while loop

Basic format:

Is
CONDITION
True?

. No
while (CONDITION) {

STATEMENTS
in while {}

Exit loop |,

23 /29

Quick code tracing 02:00

Consider this function: What will this code print?
f <— function(x) { f(5)
n <-1 f(10)
while (n < x) { f(50)
cat(n, '\n'") f(60)
n <— 2%n f(64)
} L
}

24 | 29

forvs.while

Use Tor loops when the number of Use while loops when the number

Iterations is known. of iterations is unknown.
1. Build the sequence 1. Define stopping condition
2. |terate over it 2. lterate until condition is met
for (i in 1:5) { # Define the sequence i<-1
cat(i, '\n") while (i <= 5) { # Set stopping condition
} cat(i, '\n")

i1 <=1+ 1 # Update condition

}

Mystery Function

What does this function do?

(You can assume that n is a number)

02:00

mystery_function <- function(n) {
if (n == 0) {
cat(0)

}
n <— abs(n)
while (n > 0) {

cat(n %% 10, '\n')

n <—-n %/% 10

26 [29

Your turn: Write functions [15 : @@]

In your practice file, you have the solution Your job is to write

for the function isPositiveEven(n), nthPositiveEven(n):

which returns TRUE if n is a positive even

number and EALSE otherwise. A function that returns the nth positive
even integer in the sequence of all

e isPositiveEven(1) == FALSE positive even numbers

e isPositiveEven(4) == TRUE

e isPositiveEven(7) == FALSE e nthPositiveEven(1l) == 2

e isPositiveEven(28) == TRUE e nthPositiveEven(2) == 4

e isPositiveEven(-1) == FALSE e nthPositiveEven(3) == 6

e isPositiveEven(-2) == FALSE e nthPositiveEven(4) == 8
e nthPositiveEven(5) == 10
e nthPositiveEven(6) == 12

27 [29

Your turn [2@:0@}

isPrime(n): Write a function that takesa nthPrime(n): Write a function that takes
non-negative integer, n, and returns TRUE a non-negative integer, n, and returns the

if it is a prime number and FALSE nth prime number, where nthPrime(1)
otherwise. Here's some test cases: returns the first prime number (2). Hint:
use the function isPrime(n) as a helper
° iSPrime(l) == FALSE function!
e isPrime(2) == TRUE
e isPrime(7) == TRUE e nthPrime(1) == 2
e isPrime(13) == TRUE e nthPrime(2) == 3
e isPrime(14) == FALSE e nthPrime(3) == 5
e nthPrime(4) == 7
e nthPrime(7) == 17

HW 5

. Trickier turtles

. Read about Happy Numbers

29 /29

https://p4a.seas.gwu.edu/2025-Spring/hw/5-iteration.html
https://en.wikipedia.org/wiki/Happy_number

