
Week 7: Week 7: StringsStrings
 EMSE 4571 / 6571: Intro to Programming for EMSE 4571 / 6571: Intro to Programming for

AnalyticsAnalytics

 John Paul Helveston John Paul Helveston

 February 27, 2025 February 27, 2025

1 / 491 / 49

Write your name on the quiz!Write your name on the quiz!

Rules:Rules:
Work alone; no outside help of anyWork alone; no outside help of any

kind is allowed.kind is allowed.

No calculators, no notes, no books, noNo calculators, no notes, no books, no

computers, no phones.computers, no phones.

Quiz 6Quiz 6

2 / 492 / 49

1010::0000

Week 7: Week 7: StringsStrings
1. Making strings1. Making strings

2. Case conversion & substrings2. Case conversion & substrings

3. Padding, splitting, & merging3. Padding, splitting, & merging

BREAKBREAK

4. Detecting & replacing4. Detecting & replacing

3 / 493 / 49

Week 7: Week 7: StringsStrings
1. 1. Making stringsMaking strings

2. Case conversion & substrings2. Case conversion & substrings

3. Padding, splitting, & merging3. Padding, splitting, & merging

BREAKBREAK

4. Detecting & replacing4. Detecting & replacing

4 / 494 / 49

Install the stringr library

install.packages("stringr")

(Only do this once...and you already did this in HW 2)

Load the stringr library

library(stringr)

(Do this every time you use the package)

5 / 49

Make a string with 'single' or "double" quotes
cat("This is a string")

#> This is a string

cat('This is a string')

#> This is a string

6 / 49

Use single vs. double quotes where it makes sense
Use double quotes when ' is in the string

cat("It's great!")

#> It's great!

Use single quotes when " is in the string

cat('I said, "Hello"')

#> I said, "Hello"

7 / 49

What if a string has both ' and " symbols?
Example: It's nice to say, "Hello"

cat("It's nice to say, "Hello"")

#> Error in parse(text = input): <text>:1:25: unexpected symbol
#> 1: cat("It's nice to say, "Hello
#> ^

cat('It's nice to say, "Hello"')

#> Error in parse(text = input): <text>:1:9: unexpected symbol
#> 1: cat('It's
#> ^

8 / 49

"Escaping" to the rescue!
Use the \ symbol to "escape" a literal symbol

cat("It's nice to say, \"Hello\"") # Double quote

#> It's nice to say, "Hello"

cat('It\'s nice to say, "Hello"') # Single quote

#> It's nice to say, "Hello"

9 / 49

New line: \n

cat('This\nthat')

#> This
#> that

Tab space: \t

cat('This\tthat')

#> This that

Backslash: \\

cat('This\\that')

#> This\that

Commonly escaped symbols

10 / 49

String constants: Sets of common strings
letters

#> [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t"
"u" "v" "w" "x" "y" "z"

LETTERS

#> [1] "A" "B" "C" "D" "E" "F" "G" "H" "I" "J" "K" "L" "M" "N" "O" "P" "Q" "R" "S" "T"
"U" "V" "W" "X" "Y" "Z"

11 / 49

String constants: Sets of common strings
month.name

#> [1] "January" "February" "March" "April" "May" "June" "July"
"August" "September" "October" "November" "December"

month.abb

#> [1] "Jan" "Feb" "Mar" "Apr" "May" "Jun" "Jul" "Aug" "Sep" "Oct" "Nov" "Dec"

12 / 49

length(fruit)

#> [1] 80

fruit[1:4]

#> [1] "apple" "apricot" "avocado" "banana"

length(words)

#> [1] 980

words[1:4]

#> [1] "a" "able" "about"
"absolute"

length(sentences)

#> [1] 720

sentences[1:4]

#> [1] "The birch canoe slid on the smooth
planks." "Glue the sheet to the dark blue
background." "It's easy to tell the depth of
a well." "These days a chicken leg is a
rare dish."

The stringr library has a few longer string constants:
fruit, words, sentences

13 / 49

Week 7: Week 7: StringsStrings
1. Making strings1. Making strings

2. 2. Case conversion & substringsCase conversion & substrings

3. Padding, splitting, & merging3. Padding, splitting, & merging

BREAKBREAK

4. Detecting & replacing4. Detecting & replacing

14 / 4914 / 49

Case conversion & substrings
Function Description

str_to_lower() converts string to lower case

str_to_upper() converts string to upper case

str_to_title() converts string to title case

str_length() number of characters

str_sub() extracts substrings

str_locate() returns indices of substrings

str_dup() duplicates characters

15 / 49

Case conversion
x <- "Want to hear a joke about paper? Never mind, it's tearable."

str_to_lower(x)

#> [1] "want to hear a joke about paper? never mind, it's tearable."

str_to_upper(x)

#> [1] "WANT TO HEAR A JOKE ABOUT PAPER? NEVER MIND, IT'S TEARABLE."

str_to_title(x)

#> [1] "Want To Hear A Joke About Paper? Never Mind, It's Tearable."

16 / 49

Case matters:

a <- "Apples"
b <- "apples"
a == b

#> [1] FALSE

Convert case before comparing if you

want to compare the string text without

casing:

str_to_lower(a) == str_to_lower(b)

#> [1] TRUE

str_to_upper(a) == str_to_upper(b)

#> [1] TRUE

Comparing strings

17 / 49

The length() function returns the vector

length:

length("hello world")

#> [1] 1

To get the # of characters, use

str_length():

str_length("hello world")

#> [1] 11

str_length(" ") # Spaces count

#> [1] 1

str_length("") # Empty string

#> [1] 0

Get the number of characters in a string

18 / 49

Indices start at 1:

str_sub("Apple", 1, 3)

#> [1] "App"

Negative numbers count backwards from

end:

str_sub("Apple", -3, -1)

#> [1] "ple"

Modify a string with str_sub():

x <- 'abcdef'
str_sub(x, 1, 3) <- 'ABC'
x

#> [1] "ABCdef"

Access characters by their index with str_sub()

19 / 49

1): Use str_locate() to get

the start and end indices:

indices <- str_locate(x, 'Good')
indices

#> start end
#> [1,] 7 10

2): Use str_sub() to get the substring:

str_sub(x, indices[1], indices[2])

#> [1] "Good"

Get the indices of substrings
Extract the substring "Good" from the following string:

x <- 'thisIsGoodPractice'

20 / 49

Repeat a string with str_dup()
str_dup("holla", 3)

#> [1] "hollahollaholla"

Note the difference with rep():

rep("holla", 3)

#> [1] "holla" "holla" "holla"

21 / 49

Get the first 3 letters in each string:

str_sub(x, 1, 3)

#> [1] "app" "ora"

Duplicate each string twice

str_dup(x, 2)

#> [1] "applesapples" "orangesoranges"

stringr functions work on vectors
x <- c("apples", "oranges")
x

#> [1] "apples" "oranges"

22 / 49

'thisIsGood'
'practice'
'GOOD'
'thisthisthis'
'GOODGOODGOOD'

Hint: You'll need these:

str_to_lower()
str_to_upper()
str_locate()
str_sub()
str_dup()

Quick practice
Create this string object:

x <- 'thisIsGoodPractice'

Then use stringr functions to transform x into the following strings:

23 / 49

05:00

Week 7: Week 7: StringsStrings
1. Making strings1. Making strings

2. Case conversion & substrings2. Case conversion & substrings

3. 3. Padding, splitting, & mergingPadding, splitting, & merging

BREAKBREAK

4. Detecting & replacing4. Detecting & replacing

24 / 4924 / 49

Padding, splitting, & merging
Function Description

str_trim() removes leading and trailing whitespace

str_pad() pads a string

paste() string concatenation

str_split() split a string into a vector

25 / 49

Remove excess white space with str_trim()
x <- " aStringWithSpace "
x

#> [1] " aStringWithSpace "

str_trim(x) # Trims both sides by default

#> [1] "aStringWithSpace"

str_trim(x, side = "left") # Only trim left side

#> [1] "aStringWithSpace "

str_trim(x, side = "right") # Only trim right side

#> [1] " aStringWithSpace"

26 / 49

Add white space (or other characters) with str_pad()
x <- "hello"
x

#> [1] "hello"

str_pad(x, width = 10) # Inserts pad on left by default

#> [1] " hello"

str_pad(x, width = 10, side = "both") # Pad both sides

#> [1] " hello "

str_pad(x, width = 10, side = "both", pad = '*') # Specify the pad

#> [1] "**hello***"

27 / 49

Combine strings into one string with paste()
paste('x', 'y', 'z')

#> [1] "x y z"

Control separation with sep argument (default is " ":

paste('x', 'y', 'z', sep = "-")

#> [1] "x-y-z"

28 / 49

Combine strings into one string with paste()
Note the difference with vectors of strings:

paste(c('x', 'y', 'z'))

#> [1] "x" "y" "z"

To make a single string from a vector of strings, use collapse:

paste(c('x', 'y', 'z'), collapse = "")

#> [1] "xyz"

29 / 49

Split a string into multiple strings with str_split()
x <- 'This string has spaces-and-dashes'
x

#> [1] "This string has spaces-and-dashes"

str_split(x, " ") # Split on the spaces

#> [[1]]
#> [1] "This" "string" "has" "spaces-and-dashes"

str_split(x, "-") # Split on the dashes

#> [[1]]
#> [1] "This string has spaces" "and" "dashes"

30 / 49

What's with the [[1]] thing?
str_split() returns a list of vectors

x <- c('babble', 'scrabblebabble')
str_split(x, 'bb')

#> [[1]]
#> [1] "ba" "le"
#>
#> [[2]]
#> [1] "scra" "leba" "le"

If you're only splitting one string, add [[1]] to get the first vector:

str_split('hooray', 'oo')[[1]]

#> [1] "h" "ray"

31 / 49

Common splits (memorize these!)
Splitting on "" breaks a string into characters:

str_split("apples", "")[[1]]

#> [1] "a" "p" "p" "l" "e" "s"

Splitting on " " breaks a sentence into words:

x <- "If you want to view paradise, simply look around and view it"
str_split(x, " ")[[1]]

#> [1] "If" "you" "want" "to" "view" "paradise," "simply"
"look" "around" "and" "view" "it"

32 / 49

"hello world"
"***hello world***"
c("this", "is", "good", "practice")
"this is good practice"
"hello world, this is good practice"

Hint: You'll need these:

str_trim()
str_pad()
paste()
str_split()

Quick practice:
Create the following objects:

x <- 'this_is_good_practice'
y <- c('hello', 'world')

Use stringr functions to transform x and y into the following:

33 / 49

05:00

Your turnYour turn
1) 1) reverseString(s)reverseString(s)

Write a function that returns the string Write a function that returns the string ss in reverse order. in reverse order.

reverseString("aWordWithCaps") == "spaChtiWdroWa"reverseString("aWordWithCaps") == "spaChtiWdroWa"
reverseString("abcde") == "edcba"reverseString("abcde") == "edcba"
reverseString("") == ""reverseString("") == ""

2) 2) isPalindrome(s)isPalindrome(s)

Write a function that returns Write a function that returns TRUETRUE if the string if the string ss is a is a PalindromePalindrome and and FALSEFALSE otherwise. otherwise.

isPalindrome("abcba") == TRUEisPalindrome("abcba") == TRUE
isPalindrome("abcb") == FALSEisPalindrome("abcb") == FALSE
isPalindrome("321123") == TRUEisPalindrome("321123") == TRUE

34 / 4934 / 49

1515::0000

https://en.wikipedia.org/wiki/Palindrome

BreakBreak

35 / 4935 / 49

0505::0000

Week 7: Week 7: StringsStrings
1. Making strings1. Making strings

2. Case conversion & substrings2. Case conversion & substrings

3. Padding, splitting, & merging3. Padding, splitting, & merging

BREAKBREAK

4. 4. Detecting & replacingDetecting & replacing

36 / 4936 / 49

Detecting & replacing
Function Description

str_sort() sort a string alphabetically

str_order() get the order of a sorted string

str_detect() match a string in another string

str_replace() replace a string in another string

37 / 49

Sort string vectors alphabetically with str_sort()
x <- c('Y', 'M', 'C', 'A')
x

#> [1] "Y" "M" "C" "A"

str_sort(x)

#> [1] "A" "C" "M" "Y"

str_sort(x, decreasing = TRUE)

#> [1] "Y" "M" "C" "A"

38 / 49

Detect pattern in string: str_detect(string, pattern)

tenFruit <- fruit[1:10]
tenFruit

#> [1] "apple" "apricot" "avocado" "banana" "bell pepper"
"bilberry" "blackberry" "blackcurrant" "blood orange" "blueberry"

str_detect(tenFruit, "berry")

#> [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE TRUE

How many in vector have the string "berry"?

sum(str_detect(tenFruit, "berry"))

#> [1] 3

39 / 49

Count number of times pattern appears in string
str_count(string, pattern)

x <- c("apple", "banana", "pear")
str_count(x, "a")

#> [1] 1 3 1

Note the difference with str_detect():

str_detect(x, "a")

#> [1] TRUE TRUE TRUE

40 / 49

Wrong:

str_detect(fiveFruit, "a")

#> [1] TRUE TRUE TRUE TRUE FALSE

Right:

str_detect(fiveFruit, "^a")

#> [1] TRUE TRUE TRUE FALSE FALSE

Detect if string starts with pattern
Which fruits start with "a"?

fiveFruit <- fruit[1:5]
fiveFruit

#> [1] "apple" "apricot" "avocado" "banana" "bell pepper"

41 / 49

Wrong:

str_detect(fiveFruit, "e")

#> [1] TRUE FALSE FALSE FALSE TRUE

Right:

str_detect(fiveFruit, "e$")

#> [1] TRUE FALSE FALSE FALSE FALSE

Detect if string ends with pattern
Which fruits end with an "e"?

fiveFruit

#> [1] "apple" "apricot" "avocado" "banana" "bell pepper"

42 / 49

Remember:
If you start with power (^), you'll end up with money ($).

fiveFruit

#> [1] "apple" "apricot" "avocado" "banana" "bell pepper"

str_detect(fiveFruit, "^a") # Start with power (^)

#> [1] TRUE TRUE TRUE FALSE FALSE

str_detect(fiveFruit, "e$") # End with money ($)

#> [1] TRUE FALSE FALSE FALSE FALSE

43 / 49

Quick practice:
fruit[1:5]

#> [1] "apple" "apricot" "avocado" "banana" "bell pepper"

Use stringr functions to answer the following questions about the fruit vector:

1. How many fruit have the string "rr" in it?

2. Which fruit end with string "fruit"?

3. Which fruit contain more than one "o" character?

Hint: You'll need to use str_detect() and str_count()

44 / 49

05:00

Replace matched strings with new string
str_replace(string, pattern, replacement)

x <- c("apple", "pear", "banana")

str_replace(x, "a", "-") # Only replaces the first match

#> [1] "-pple" "pe-r" "b-nana"

str_replace_all(x, "a", "-") # Replaces all matches

#> [1] "-pple" "pe-r" "b-n-n-"

45 / 49

Quick practice redux

x <- 'this_is_good_practice'

Convert x into: "this is good practice"

We did this earlier:

paste(str_split(x, "_")[[1]], collapse = " ")

#> [1] "this is good practice"

But now we can do this!

str_replace_all(x, "_", " ")

#> [1] "this is good practice"

46 / 49

Your turnYour turn
censorText(text, words)censorText(text, words)

Write a function that takes a string Write a function that takes a string 'text''text' and a character vector and a character vector 'words''words', and, and

replaces all occurrences of any word in replaces all occurrences of any word in 'words''words' with asterisks (one with asterisks (one ** per letter). The per letter). The

function should be case-insensitive.function should be case-insensitive.

Some test cases:Some test cases:

censorText("This is a bad example", c("bad")) == "This is a *** example"censorText("This is a bad example", c("bad")) == "This is a *** example"
censorText("hello world", c("hello", "world")) == "***** *****"censorText("hello world", c("hello", "world")) == "***** *****"
censorText("Hello World", c("hello", "world")) == "***** *****"censorText("Hello World", c("hello", "world")) == "***** *****"
censorText("nothing to censor", c("foo")) == "nothing to censor"censorText("nothing to censor", c("foo")) == "nothing to censor"
censorText("Case SENSITIVE", c("case")) == "**** SENSITIVE"censorText("Case SENSITIVE", c("case")) == "**** SENSITIVE"

47 / 4947 / 49

1515::0000

Extra practiceExtra practice
1) 1) sortString(s)sortString(s): Write the function : Write the function sortString(s)sortString(s) that takes a string that takes a string ss and returns back an and returns back an

alphabetically sorted string.alphabetically sorted string.

sortString("cba") == "abc"sortString("cba") == "abc"
sortString("abedhg") == "abdegh"sortString("abedhg") == "abdegh"
sortString("AbacBc") == "aAbBcc"sortString("AbacBc") == "aAbBcc"

2) 2) areAnagrams(s1, s2)areAnagrams(s1, s2): Write the function : Write the function areAnagrams(s1, s2)areAnagrams(s1, s2) that takes two strings, that takes two strings,

s1s1 and and s2s2, and returns , and returns TRUETRUE if the strings are if the strings are anagramsanagrams, and , and FALSEFALSE otherwise. otherwise. Treat lower andTreat lower and

upper case as the same lettersupper case as the same letters..

areAnagrams("", "") == TRUEareAnagrams("", "") == TRUE
areAnagrams("aabbccdd", "bbccddee") == FALSEareAnagrams("aabbccdd", "bbccddee") == FALSE
areAnagrams("TomMarvoloRiddle", "IAmLordVoldemort") == TRUEareAnagrams("TomMarvoloRiddle", "IAmLordVoldemort") == TRUE

48 / 4948 / 49

1515::0000

https://en.wikipedia.org/wiki/Anagram

Homework 7

Deadline is after the midterm: March 18

Midterm

In class next week.

100 minutes (finish by 2:25pm).

You can bring a single 8.5 x 11 sheet of paper (front & back) with anything on it.

You must turn in your note sheet with your exam (I'll give it back after grading).

49 / 49

https://p4a.seas.gwu.edu/2025-Spring/hw/7-strings.html

