
Week 10: Week 10: Data WranglingData Wrangling
 EMSE 4571: Intro to Programming for Analytics EMSE 4571: Intro to Programming for Analytics

 John Paul Helveston John Paul Helveston

 March 31, 2022 March 31, 2022

1 / 571 / 57



Week 10: Week 10: Data WranglingData Wrangling
1. Selecting & filtering1. Selecting & filtering

2. Sequences with pipes2. Sequences with pipes

BREAKBREAK

3. Creating new variables3. Creating new variables

4. Grouped operations4. Grouped operations

2 / 572 / 57



Week 10: Week 10: Data WranglingData Wrangling
1. 1. Selecting & filteringSelecting & filtering

2. Sequences with pipes2. Sequences with pipes

BREAKBREAK

3. Creating new variables3. Creating new variables

4. Grouped operations4. Grouped operations

3 / 573 / 57



Before we start
Make sure you have the "tidyverse" installed

install.packages('tidyverse')

(this is at the top of the notes.R file)

Remember: you only need to install packages once!

4 / 57



The tidyverse: stringr + dplyr + readr + ggplot2 + ...

Art by Allison Horst

5 / 57

https://www.allisonhorst.com/


Today: better data wrangling with dplyr

Art by Allison Horst 6 / 57

https://www.allisonhorst.com/


80% of the job is data wrangling

7 / 57



The main dplyr "verbs"
select(): subset columns
filter(): subset rows on conditions
arrange(): sort data frame
mutate(): create new columns by using information from other columns
group_by(): group data to perform grouped operations
summarize(): create summary statistics (usually on grouped data)
count(): count discrete rows

8 / 57



This week's British Band: The Spice Girls
spicegirls <- tibble(
    firstName   = c("Melanie", "Melanie", "Emma", "Geri", "Victoria"),
    lastName    = c("Brown", "Chisholm", "Bunton", "Halliwell", "Beckham"),
    spice       = c("Scary", "Sporty", "Baby", "Ginger", "Posh"),
    yearOfBirth = c(1975, 1974, 1976, 1972, 1974),
    deceased    = c(FALSE, FALSE, FALSE, FALSE, FALSE)
)
spicegirls

#> # A tibble: 5 × 5
#>   firstName lastName  spice  yearOfBirth deceased
#>   <chr>     <chr>     <chr>        <dbl> <lgl>   
#> 1 Melanie   Brown     Scary         1975 FALSE   
#> 2 Melanie   Chisholm  Sporty        1974 FALSE   
#> 3 Emma      Bunton    Baby          1976 FALSE   
#> 4 Geri      Halliwell Ginger        1972 FALSE   
#> 5 Victoria  Beckham   Posh          1974 FALSE

9 / 57



Select columns with select()

10 / 57



Select columns with select()
Example: Select the columns firstName & lastName

Base R:

spicegirls[c('firstName', 'lastName')]

#> # A tibble: 5 × 2
#>   firstName lastName 
#>   <chr>     <chr>    
#> 1 Melanie   Brown    
#> 2 Melanie   Chisholm 
#> 3 Emma      Bunton   
#> 4 Geri      Halliwell
#> 5 Victoria  Beckham

11 / 57



Select columns with select()
Example: Select the columns firstName & lastName

dplyr: (note that you don't need "" around names)

select(spicegirls, firstName, lastName)

#> # A tibble: 5 × 2
#>   firstName lastName 
#>   <chr>     <chr>    
#> 1 Melanie   Brown    
#> 2 Melanie   Chisholm 
#> 3 Emma      Bunton   
#> 4 Geri      Halliwell
#> 5 Victoria  Beckham

12 / 57



Select columns with select()
Use the - sign to drop columns:

select(spicegirls, -firstName, -lastName)

#> # A tibble: 5 × 3
#>   spice  yearOfBirth deceased
#>   <chr>        <dbl> <lgl>   
#> 1 Scary         1975 FALSE   
#> 2 Sporty        1974 FALSE   
#> 3 Baby          1976 FALSE   
#> 4 Ginger        1972 FALSE   
#> 5 Posh          1974 FALSE

13 / 57



Select columns with select()
Select columns based on name criteria:

ends_with() = Select columns that end with a character string
contains() = Select columns that contain a character string
matches() = Select columns that match a regular expression
one_of() = Select column names that are from a group of names

14 / 57



Select columns with select()
Select only the "name" columns

select(spicegirls, ends_with('name'))

#> # A tibble: 5 × 2
#>   firstName lastName 
#>   <chr>     <chr>    
#> 1 Melanie   Brown    
#> 2 Melanie   Chisholm 
#> 3 Emma      Bunton   
#> 4 Geri      Halliwell
#> 5 Victoria  Beckham

15 / 57



Select rows with filter()

16 / 57



Select rows with filter()
Example: Filter the band members born after 1974

## # A tibble: 5 x 5
##   firstName lastName  spice  yearOfBirth deceased
##   <chr>     <chr>     <chr>        <dbl> <lgl>
## 1 Melanie   Brown     Scary         1975 FALSE
## 2 Melanie   Chisholm  Sporty        1974 FALSE
## 3 Emma      Bunton    Baby          1976 FALSE
## 4 Geri      Halliwell Ginger        1972 FALSE
## 5 Victoria  Beckham   Posh          1974 FALSE

17 / 57



Select rows with filter()
Example: Filter the band members born after 1974

Base R:

spicegirls[spicegirls$yearOfBirth > 1974,]

#> # A tibble: 2 × 5
#>   firstName lastName spice yearOfBirth deceased
#>   <chr>     <chr>    <chr>       <dbl> <lgl>   
#> 1 Melanie   Brown    Scary        1975 FALSE   
#> 2 Emma      Bunton   Baby         1976 FALSE

18 / 57



Select rows with filter()
Example: Filter the band members born after 1974

dplyr:

filter(spicegirls, yearOfBirth > 1974)

#> # A tibble: 2 × 5
#>   firstName lastName spice yearOfBirth deceased
#>   <chr>     <chr>    <chr>       <dbl> <lgl>   
#> 1 Melanie   Brown    Scary        1975 FALSE   
#> 2 Emma      Bunton   Baby         1976 FALSE

19 / 57



Select rows with filter()
Example: Filter the band members born after 1974 & are named "Melanie"

dplyr:

filter(spicegirls, yearOfBirth > 1974 & firstName == "Melanie")

#> # A tibble: 1 × 5
#>   firstName lastName spice yearOfBirth deceased
#>   <chr>     <chr>    <chr>       <dbl> <lgl>   
#> 1 Melanie   Brown    Scary        1975 FALSE

20 / 57



Logic operators for filter()

Description Example

Values greater than 1 value > 1
Values greater than or equal to 1 value >= 1
Values less than 1 value < 1
Values less than or equal to 1 value <= 1
Values equal to 1 value == 1
Values not equal to 1 value != 1
Values in the set c(1, 4) value %in% c(1, 4)

21 / 57



Removing missing values
Drop all rows where variable is NA

filter(data, !is.na(variable))

22 / 57



Your turn: wildlife impacts dataYour turn: wildlife impacts data
1) Create the data frame object 1) Create the data frame object dfdf by using  by using here()here() and  and read_csv()read_csv() to load the to load the
wildlife_impacts.csvwildlife_impacts.csv file in the  file in the datadata folder. folder.

2) Use the 2) Use the dfdf object and the  object and the select()select() and  and filter()filter() functions to answer the following functions to answer the following
questions:questions:

Create a new data frame, Create a new data frame, df_birdsdf_birds, that contains only the variables (columns) about the, that contains only the variables (columns) about the
species of bird.species of bird.
Create a new data frame, Create a new data frame, dcdc, that contains only the observations (rows) from DC airports., that contains only the observations (rows) from DC airports.
Create a new data frame, Create a new data frame, dc_birds_knowndc_birds_known, that contains only the observations (rows) from, that contains only the observations (rows) from
DC airports and those where the species of bird is known.DC airports and those where the species of bird is known.
How many How many knownknown unique species of birds have been involved in accidents at DC airports? unique species of birds have been involved in accidents at DC airports?

1010::0000

23 / 5723 / 57



Week 10: Week 10: Data WranglingData Wrangling
1. Selecting & filtering1. Selecting & filtering

2. 2. Sequences with pipesSequences with pipes

BREAKBREAK

3. Creating new variables3. Creating new variables

4. Grouped operations4. Grouped operations

24 / 5724 / 57



The Treachery of Images, René Magritte

magrittr package

Create sequences of operations with "pipes"

25 / 57

https://en.wikipedia.org/wiki/The_Treachery_of_Images
https://magrittr.tidyverse.org/


Think of %>% as the words "...and then..."
Without Pipes (read from inside-out):

leave_house(get_dressed(get_out_of_bed(wake_up(me))))

With Pipes:

me %>%
    wake_up() %>%
    get_out_of_bed() %>%
    get_dressed() %>%
    leave_house()

26 / 57



Sequence operations with pipes: %>%
1. Filter the band members born after 1974
2. Select only the columns firstName & lastName

Without Pipes:

select(filter(spicegirls, yearOfBirth > 1974), firstName, lastName)

#> # A tibble: 2 × 2
#>   firstName lastName
#>   <chr>     <chr>   
#> 1 Melanie   Brown   
#> 2 Emma      Bunton

27 / 57



Sequence operations with pipes: %>%
1. Filter the band members born after 1974
2. Select only the columns firstName & lastName

With Pipes:

spicegirls %>%
    filter(yearOfBirth > 1974) %>%
    select(firstName, lastName)

#> # A tibble: 2 × 2
#>   firstName lastName
#>   <chr>     <chr>   
#> 1 Melanie   Brown   
#> 2 Emma      Bunton

28 / 57



Think of the words "...and then..."
Without Pipes:

select(filter(spicegirls, yearOfBirth > 1974), firstName, lastName)

With Pipes: Note that you don't need to repeat the dataframe name

spicegirls %>%
    filter(yearOfBirth > 1974) %>%
    select(firstName, lastName)

29 / 57



Sort rows with arrange()
Sort the data frame by year of birth:

spicegirls %>%
    arrange(yearOfBirth)

#> # A tibble: 5 × 5
#>   firstName lastName  spice  yearOfBirth deceased
#>   <chr>     <chr>     <chr>        <dbl> <lgl>   
#> 1 Geri      Halliwell Ginger        1972 FALSE   
#> 2 Melanie   Chisholm  Sporty        1974 FALSE   
#> 3 Victoria  Beckham   Posh          1974 FALSE   
#> 4 Melanie   Brown     Scary         1975 FALSE   
#> 5 Emma      Bunton    Baby          1976 FALSE

30 / 57



Sort rows with arrange()
Use the desc() function to sort in descending order:

spicegirls %>%
    arrange(desc(yearOfBirth))

#> # A tibble: 5 × 5
#>   firstName lastName  spice  yearOfBirth deceased
#>   <chr>     <chr>     <chr>        <dbl> <lgl>   
#> 1 Emma      Bunton    Baby          1976 FALSE   
#> 2 Melanie   Brown     Scary         1975 FALSE   
#> 3 Melanie   Chisholm  Sporty        1974 FALSE   
#> 4 Victoria  Beckham   Posh          1974 FALSE   
#> 5 Geri      Halliwell Ginger        1972 FALSE

31 / 57



Sort rows with arrange()
Example of filtering, arranging, and selecting:

spicegirls %>%
    filter(yearOfBirth < 1975) %>%
    arrange(desc(yearOfBirth)) %>%
    select(ends_with('name'))

#> # A tibble: 3 × 2
#>   firstName lastName 
#>   <chr>     <chr>    
#> 1 Melanie   Chisholm 
#> 2 Victoria  Beckham  
#> 3 Geri      Halliwell

32 / 57



Your turnYour turn
1) Create the data frame object 1) Create the data frame object dfdf by using  by using here()here() and  and read_csv()read_csv() to load the to load the
wildlife_impacts.csvwildlife_impacts.csv file in the  file in the datadata folder. folder.

2) Use the 2) Use the dfdf object and  object and select()select(), , filter()filter(), and , and %>%%>% to answer the following questions: to answer the following questions:

Create a new data frame, Create a new data frame, dc_dawndc_dawn, that contains only the observations (rows) from DC, that contains only the observations (rows) from DC
airports that occurred at dawn.airports that occurred at dawn.
Create a new data frame, Create a new data frame, dc_dawn_birdsdc_dawn_birds, that contains only the observations (rows) from, that contains only the observations (rows) from
DC airports that occurred at dawn and only the variables (columns) about the species ofDC airports that occurred at dawn and only the variables (columns) about the species of
bird.bird.
Create a new data frame, Create a new data frame, dc_dawn_birds_knowndc_dawn_birds_known, that contains only the observations, that contains only the observations
(rows) from DC airports that occurred at dawn and only the variables (columns) about the(rows) from DC airports that occurred at dawn and only the variables (columns) about the
KNOWN species of bird.KNOWN species of bird.
How many How many knownknown unique species of birds have been involved in accidents at DC airports at unique species of birds have been involved in accidents at DC airports at
dawn?dawn?

1010::0000

33 / 5733 / 57



BreakBreak

0505::0000
34 / 5734 / 57



Week 10: Week 10: Data WranglingData Wrangling
1. Selecting & filtering1. Selecting & filtering

2. Sequences with pipes2. Sequences with pipes

BREAKBREAK

3. 3. Creating new variablesCreating new variables

4. Grouped operations4. Grouped operations

35 / 5735 / 57



Create new variables with mutate()

36 / 57



Art by Allison Horst 37 / 57

https://www.allisonhorst.com/


Create new variables with mutate()
Example: Use the yearOfBirth variable to compute the age of each band member

Base R:

spicegirls$age <- 2022 - spicegirls$yearOfBirth

dplyr:

spicegirls %>%
    mutate(age = 2022 - yearOfBirth)

#> # A tibble: 5 × 6
#>   firstName lastName  spice  yearOfBirth deceased   age
#>   <chr>     <chr>     <chr>        <dbl> <lgl>    <dbl>
#> 1 Melanie   Brown     Scary         1975 FALSE       47
#> 2 Melanie   Chisholm  Sporty        1974 FALSE       48
#> 3 Emma      Bunton    Baby          1976 FALSE       46
#> 4 Geri      Halliwell Ginger        1972 FALSE       50 38 / 57



You can immediately use new variables
spicegirls %>%
    mutate(
        age = 2022 - yearOfBirth,
        meanAge  = mean(age)) # Immediately using the "age" variable

#> # A tibble: 5 × 7
#>   firstName lastName  spice  yearOfBirth deceased   age meanAge
#>   <chr>     <chr>     <chr>        <dbl> <lgl>    <dbl>   <dbl>
#> 1 Melanie   Brown     Scary         1975 FALSE       47    47.8
#> 2 Melanie   Chisholm  Sporty        1974 FALSE       48    47.8
#> 3 Emma      Bunton    Baby          1976 FALSE       46    47.8
#> 4 Geri      Halliwell Ginger        1972 FALSE       50    47.8
#> 5 Victoria  Beckham   Posh          1974 FALSE       48    47.8

39 / 57



Handling if/else conditions
ifelse(<condition>, <if TRUE>, <else>)

spicegirls %>%
    mutate(
        yobAfter74 = ifelse(yearOfBirth > 1974, "yes", "no"))

#> # A tibble: 5 × 6
#>   firstName lastName  spice  yearOfBirth deceased yobAfter74
#>   <chr>     <chr>     <chr>        <dbl> <lgl>    <chr>     
#> 1 Melanie   Brown     Scary         1975 FALSE    yes       
#> 2 Melanie   Chisholm  Sporty        1974 FALSE    no        
#> 3 Emma      Bunton    Baby          1976 FALSE    yes       
#> 4 Geri      Halliwell Ginger        1972 FALSE    no        
#> 5 Victoria  Beckham   Posh          1974 FALSE    no

40 / 57



Your turnYour turn
1) Create the data frame object 1) Create the data frame object dfdf by using  by using here()here() and  and read_csv()read_csv() to load the to load the
wildlife_impacts.csvwildlife_impacts.csv file in the  file in the datadata folder. folder.

2) Use the 2) Use the dfdf object with  object with %>%%>% and  and mutate()mutate() to create the following new variables: to create the following new variables:

height_milesheight_miles: The : The heightheight variable converted to miles (Hint: there are 5,280 feet in a variable converted to miles (Hint: there are 5,280 feet in a
mile).mile).
cost_milcost_mil: Is : Is TRUETRUE if the repair costs was greater or equal to $1 million,  if the repair costs was greater or equal to $1 million, FALSEFALSE otherwise. otherwise.

seasonseason: One of four seasons based on the : One of four seasons based on the incident_monthincident_month variable: variable:

springspring: March, April, May: March, April, May
summersummer: June, July, August: June, July, August
fallfall: September, October, November: September, October, November
winterwinter: December, January, February: December, January, February

1010::0000

41 / 5741 / 57



Week 10: Week 10: Data WranglingData Wrangling
1. Selecting & filtering1. Selecting & filtering

2. Sequences with pipes2. Sequences with pipes

BREAKBREAK

3. Creating new variables3. Creating new variables

4. 4. Grouped operationsGrouped operations

42 / 5742 / 57



Split-apply-combine with group_by

1. Split the data into groups

2. Apply some analysis to each group

3. Combine the results

43 / 57



Split-apply-combine with group_by

44 / 57



Split-apply-combine with group_by
bands

#> # A tibble: 9 × 5
#>   firstName lastName  yearOfBirth deceased band      
#>   <chr>     <chr>           <dbl> <lgl>    <chr>     
#> 1 Melanie   Brown            1975 FALSE    spicegirls
#> 2 Melanie   Chisholm         1974 FALSE    spicegirls
#> 3 Emma      Bunton           1976 FALSE    spicegirls
#> 4 Geri      Halliwell        1972 FALSE    spicegirls
#> 5 Victoria  Beckham          1974 FALSE    spicegirls
#> 6 John      Lennon           1940 TRUE     beatles   
#> 7 Paul      McCartney        1942 FALSE    beatles   
#> 8 Ringo     Starr            1940 FALSE    beatles   
#> 9 George    Harrison         1943 TRUE     beatles

45 / 57



Split-apply-combine with group_by
Compute the mean band member age for each band

bands %>%
    mutate(
        age = 2020 - yearOfBirth,
        mean_age = mean(age)) # This is the mean across both bands

#> # A tibble: 9 × 7
#>   firstName lastName  yearOfBirth deceased band         age mean_age
#>   <chr>     <chr>           <dbl> <lgl>    <chr>      <dbl>    <dbl>
#> 1 Melanie   Brown            1975 FALSE    spicegirls    45     60.4
#> 2 Melanie   Chisholm         1974 FALSE    spicegirls    46     60.4
#> 3 Emma      Bunton           1976 FALSE    spicegirls    44     60.4
#> 4 Geri      Halliwell        1972 FALSE    spicegirls    48     60.4
#> 5 Victoria  Beckham          1974 FALSE    spicegirls    46     60.4
#> 6 John      Lennon           1940 TRUE     beatles       80     60.4
#> 7 Paul      McCartney        1942 FALSE    beatles       78     60.4
#> 8 Ringo     Starr            1940 FALSE    beatles       80     60.4
#> 9 George    Harrison         1943 TRUE     beatles       77     60.4

46 / 57



Split-apply-combine with group_by
Compute the mean band member age for each band

bands %>%
    mutate(age = 2020 - yearOfBirth) %>%
    group_by(band) %>% # Everything after this will be done each band
    mutate(mean_age = mean(age))

#> # A tibble: 9 × 7
#> # Groups:   band [2]
#>   firstName lastName  yearOfBirth deceased band         age mean_age
#>   <chr>     <chr>           <dbl> <lgl>    <chr>      <dbl>    <dbl>
#> 1 Melanie   Brown            1975 FALSE    spicegirls    45     45.8
#> 2 Melanie   Chisholm         1974 FALSE    spicegirls    46     45.8
#> 3 Emma      Bunton           1976 FALSE    spicegirls    44     45.8
#> 4 Geri      Halliwell        1972 FALSE    spicegirls    48     45.8
#> 5 Victoria  Beckham          1974 FALSE    spicegirls    46     45.8
#> 6 John      Lennon           1940 TRUE     beatles       80     78.8
#> 7 Paul      McCartney        1942 FALSE    beatles       78     78.8
#> 8 Ringo     Starr            1940 FALSE    beatles       80     78.8
#> 9 George    Harrison         1943 TRUE     beatles       77     78.8 47 / 57



Summarize data frames with summarise()

48 / 57



Summarize data frames with summarise()
Compute the mean band member age for each band

bands %>%
    mutate(age = 2020 - yearOfBirth) %>%
    group_by(band) %>%
    summarise(mean_age = mean(age)) # Drops all variables except for group

#> # A tibble: 2 × 2
#>   band       mean_age
#>   <chr>         <dbl>
#> 1 beatles        78.8
#> 2 spicegirls     45.8

49 / 57



Summarize data frames with summarise()
Compute the mean, min, and max band member age for each band

bands %>%
    mutate(age = 2020 - yearOfBirth) %>%
    group_by(band) %>%
    summarise(
        mean_age = mean(age),
        min_age = min(age),
        max_age = max(age))

#> # A tibble: 2 × 4
#>   band       mean_age min_age max_age
#>   <chr>         <dbl>   <dbl>   <dbl>
#> 1 beatles        78.8      77      80
#> 2 spicegirls     45.8      44      48

50 / 57



Computing counts of observations with n()
How many members are in each band?

bands %>%
    mutate(age = 2020 - yearOfBirth) %>%
    group_by(band) %>%
    summarise(
        mean_age = mean(age),
        min_age = min(age),
        max_age = max(age),
        numMembers = n())

#> # A tibble: 2 × 5
#>   band       mean_age min_age max_age numMembers
#>   <chr>         <dbl>   <dbl>   <dbl>      <int>
#> 1 beatles        78.8      77      80          4
#> 2 spicegirls     45.8      44      48          5

51 / 57



bands %>%
    group_by(band) %>%
    summarise(n = n())

#> # A tibble: 2 × 2
#>   band           n
#>   <chr>      <int>
#> 1 beatles        4
#> 2 spicegirls     5

bands %>%
    count(band)

#> # A tibble: 2 × 2
#>   band           n
#>   <chr>      <int>
#> 1 beatles        4
#> 2 spicegirls     5

If you only want a quick count, use count()
These do the same thing:

52 / 57



If you only want a quick count, use count()
You can count multiple combinations

bands %>%
    mutate(nameStartsWithG = str_detect(firstName, '^G')) %>%
    count(band, nameStartsWithG)

#> # A tibble: 4 × 3
#>   band       nameStartsWithG     n
#>   <chr>      <lgl>           <int>
#> 1 beatles    FALSE               3
#> 2 beatles    TRUE                1
#> 3 spicegirls FALSE               4
#> 4 spicegirls TRUE                1

53 / 57



Your turnYour turn
1) Create the data frame object 1) Create the data frame object dfdf by using  by using here()here() and  and read_csv()read_csv() to load the to load the
wildlife_impacts.csvwildlife_impacts.csv file in the  file in the datadata folder. folder.

2) Use the 2) Use the dfdf object and  object and group_by()group_by(), , summarise()summarise(), , count()count(), and , and %>%%>% to answer the to answer the
following questions:following questions:

Create a summary data frame that contains the mean Create a summary data frame that contains the mean heightheight for each different time of day. for each different time of day.
Create a summary data frame that contains the maximum Create a summary data frame that contains the maximum cost_repairs_infl_adjcost_repairs_infl_adj for for
each year.each year.
Which Which monthmonth has had the greatest number of reported incidents? has had the greatest number of reported incidents?
Which Which yearyear has had the greatest number of reported incidents? has had the greatest number of reported incidents?

1010::0000

54 / 5754 / 57



Exporting data
ageSummary <- bands %>%
    mutate(age = 2020 - yearOfBirth) %>%
    group_by(band) %>%
    summarise(
        mean_age = mean(age),
        min_age = min(age),
        max_age = max(age),
        numMembers = n())
ageSummary

#> # A tibble: 2 × 5
#>   band       mean_age min_age max_age numMembers
#>   <chr>         <dbl>   <dbl>   <dbl>      <int>
#> 1 beatles        78.8      77      80          4
#> 2 spicegirls     45.8      44      48          5

55 / 57



Exporting data: here() + write_csv()
Save the ageSummary data frame in your "data" folder:

1) Create a path to where you want to save the data

library(here)
savePath <- here('data', 'ageSummary.csv')

2) Export the data

library(readr)
write_csv(ageSummary, savePath)

56 / 57



HW 10
Make sure you install the package nycflights13

install.packages('nycflights13')

This package includes 5 data frames:

airlines
airports
flights
planes
weather

57 / 57


