

Week 11: Data Visualization

1 EMSE 4571: Intro to Programming for Analytics

John Paul Helveston

🛱 April 07, 2022

Quiz 6

Go to **#class** channel in Slack for quiz link

Open RStudio first!

Rules:

- You may use your notes and RStudio
- You may **not** use any other resources (e.g. the internet, your classmates, etc.)

Before we start

Make sure you have the "tidyverse" installed and loaded, and import these two data frames

library(tidyverse) **library**(here)

```
birds <- read_csv(here('data', 'wildlife_impacts.csv'))
bears <- read_csv(here('data', 'bear_killings.csv'))</pre>
```

(this is at the top of the notes-blank.R file)

The Challenger disaster

On January 28, 1986 the space shuttle Challenger exploded

The Challenger disaster

NASA Engineers had the data on temperature & o-ring failure

What NASA was shown

Tufte, Edward R. (1997) *Visual Explanations: Images and Quantities, Evidence and Narrative*, Graphics Press, Cheshire, Connecticut.

What NASA should have been shown

Tufte, Edward R. (1997) *Visual Explanations: Images and Quantities, Evidence and Narrative*, Graphics Press, Cheshire, Connecticut.

Week 11: Data Visualization

- 1. Plotting with Base R
- 2. Plotting with ggplot2: Part 1
- BREAK
- 3. Plotting with ggplot2: Part 2
- 4. Tweaking your ggplot

Week 11: Data Visualization

- 1. Plotting with Base R
- 2. Plotting with ggplot2: Part 1
- BREAK
- 3. Plotting with ggplot2: Part 2
- 4. Tweaking your ggplot

Today's data:

Bear attacks in North America

Explore the **bears** data frame:

glimpse(bears)
head(bears)

Two basic plots in R

Scatterplots

Histograms

Plot relationship between two variables

General syntax:

 $plot(x = x_vector, y = y_vector)$

Plot relationship between two variables

x and y must have the same length!

var2 <- var2[-1]</pre>

length(var1) == length(var2)

#> [1] FALSE

plot(x = var1, y = var2)

#> Error in xy.coords(x, y, xlabel, ylabel, log): 'x' and 'y' lengths differ

Plotting variables from a data frame:

Plot year vs. age:

plot(x = bears\$year, y = bears\$age)

Making plot() pretty

plot(

```
x = bears$year,
y = bears$age,
col = 'darkblue', # Point color
pch = 19, # Point shape
main = "Age of victims over time",
xlab = "Year",
ylab = "Age of victim"
```


Your turn: plot()

Does the annual number of bird impacts appear to be changing over time?

Make a plot using the **birds** data frame to justify your answer.

Hint: You may need to create a summary data frame to answer this question! **Bonus**: Make your plot pretty!

Histograms with hist()

Plot the *distribution* of a single variable

General syntax:

 $hist(x = x_vector)$

Histograms with hist()

Plot the *distribution* of a single variable

Making hist() pretty

Your turn: hist()

Make plots using the **birds** data frame to answer these questions

- 1. Which months have the highest and lowest number of bird impacts in the dataset?
- 2. Which aircrafts experience more impacts: 2-engine, 3-engine, or 4-engine?
- 3. At what height do most impacts occur?

Bonus: Make your plots pretty!

Week 11: Data Visualization

- 1. Plotting with Base R
- 2. Plotting with ggplot2: Part 1
- BREAK
- 3. Plotting with ggplot2: Part 2
- 4. Tweaking your ggplot

Advanced figures with ggplot2

Art by Allison Horst

Body weight (g)

"Grammar of Graphics"

Concept developed by Leland Wilkinson (1999)

ggplot2 package developed by Hadley Wickham (2005)

Making plot layers with ggplot2

1. The data (we'll use bears)

2. The aesthetic mapping (what goes on the axes?)

3. The geometries (points? bars? etc.)

Layer 1: The data

The ggplot() function initializes the plot with whatever data you're using

ggplot(data = bears)

Layer 2: The aesthetic mapping

The aes() function determines which variables will be *mapped* to the geometries (e.g. the axes)

Layer 3: The geometries

Use + to add geometries (e.g. points)

```
ggplot(
   data = bears,
   mapping = aes(x = year, y = age)) +
   geom_point()
```


Other common geometries

- geom_point(): scatter plots
- geom_line(): lines connecting data points
- geom_col(): bar charts
- geom_boxplot(): boxes for boxplots

Add points:

```
ggplot(
   data = bears,
   mapping = aes(x = year, y = age)) +
   geom_point()
```


Change the color of all points:

```
ggplot(
   data = bears,
   mapping = aes(x = year, y = age)) +
   geom_point(color = 'blue')
```


Map the point color to a **variable**:

```
ggplot(
   data = bears,
   mapping = aes(x = year, y = age)) +
   geom_point(aes(color = gender))
```

```
Note that color = gender is inside aes()
```


Adjust labels with labs() layer:

Your turn: geom_point()

Use the **birds** data frame to create the following plots

Break

Week 11: Data Visualization

- 1. Plotting with Base R
- 2. Plotting with ggplot2: Part 1
- BREAK
- 3. Plotting with ggplot2: Part 2
- 4. Tweaking your ggplot

Make bar charts with geom_col()

With bar charts, you'll often need to create summary variables to plot

Step 1: Summarize the data

bear_months <- bears %>%
 count(month)

Step 2: Make the plot

ggplot(data = bear_months) +
 geom_col(aes(x = month, y = n))

Example: count of attacks by month

Make bar charts with geom_col()

Alternative approach: piping directly into ggplot

bears %>%
 count(month) %>% # Pipe into ggplot
 ggplot() +
 geom_col(aes(x = month, y = n))

Be careful with geom_col() vs. geom_bar()

geom_col()

geom_bar()

Map both x and y

Only map x (y is computed)

bears %>%
 count(month) %>%
 ggplot() +
 geom_col(aes(x = month, y = n))

bears %>%
ggplot() +
geom_bar(aes(x = month))

39 / 55

Make bar charts with geom_col()

Another example: Mean age of victim in each year

```
bears %>%
 filter(!is.na(age)) %>%
 group_by(year) %>%
 summarise(meanAge = mean(age)) %>%
 ggplot() +
 geom_col(aes(x = year, y = meanAge))
```


Change bar width: width

Change bar color: fill

Change bar outline: color

```
bears %>%
  count(month) %>%
  ggplot() +
  geom_col(
    mapping = aes(x = month, y = n),
    width = 0.7,
    fill = "blue",
    color = "red")
```


Map the fill to bearType

```
bears %>%
    count(month, bearType) %>%
    ggplot() +
    geom_col(
        mapping = aes(
            x = month, y = n, fill = bearType)
    )
```

Note that I had to summarize the count by both month and bearType

<pre>bears %>% count(month, bearType)</pre>				
#> 7	# A ti	bble: 27.	× 3	
#>	mor	th bearTy	/pe n	
#>	<dt< td=""><td>l> <chr></chr></td><td><int></int></td><td></td></dt<>	l> <chr></chr>	<int></int>	
#>	1	1 Brown	1	
#>	2	1 Polar	2	
#>	3	2 Brown	1	
#>	4	3 Brown	1	
#>	5	4 Black	1	

"Factors" = Categorical variables

By default, R makes numeric variables *continuous*

bears %>%
 count(month) %>%
 ggplot() +
 geom_col(aes(x = month, y = n))

The variable month is a *number*

"Factors" = Categorical variables

You can make a continuous variable *categorical* using as.factor()

The variable month is a *factor*

Your turn: geom_col()

Use the **bears** and **birds** data frame to create the following plots

45 / 55

Week 11: Data Visualization

- 1. Plotting with Base R
- 2. Plotting with ggplot2: Part 1
- BREAK
- 3. Plotting with ggplot2: Part 2
- 4. Tweaking your ggplot

Working with themes

Themes change *global* features of your plot, like the background color, grid lines, etc.

```
ggplot(
   data = bears,
   mapping = aes(x = year, y = age)) +
   geom_point()
```


Working with themes

Themes change *global* features of your plot, like the background color, grid lines, etc.

```
ggplot(
   data = bears,
   mapping = aes(x = year, y = age)) +
   geom_point() +
   theme_bw()
```


Common themes

theme_bw()

```
ggplot(
   data = bears,
   mapping = aes(x = year, y = age)) +
   geom_point() +
   theme_bw()
```


theme_minimal()

```
ggplot(
   data = bears,
   mapping = aes(x = year, y = age)) +
   geom_point() +
   theme_minimal()
```


Common themes

```
theme_classic()
```

```
theme_void()
```

```
ggplot(
   data = bears,
   mapping = aes(x = year, y = age)) +
   geom_point() +
   theme_classic()
```


50 / 55

Other themes: hrbrthemes

```
library(hrbrthemes)
```

```
ggplot(
   data = bears,
   mapping = aes(x = year, y = age)) +
   geom_point() +
   theme_ipsum()
```


library(hrbrthemes)

```
ggplot(
   data = bears,
   mapping = aes(x = year, y = age)) +
   geom_point() +
   theme_ft_rc()
```


Other themes: **ggthemes**

```
library(ggthemes)
```

```
ggplot(
   data = bears,
   mapping = aes(x = year, y = age)) +
   geom_point() +
   theme_economist()
```


library(ggthemes)

```
ggplot(
   data = bears,
   mapping = aes(x = year, y = age)) +
   geom_point() +
   theme_economist_white()
```


Save figures with ggsave()

First, assign the plot to an object name:

```
scatterPlot <- ggplot(data = bears) +
    geom_point(aes(x = year, y = age))</pre>
```

Then use ggsave() to save the plot:

```
ggsave(
   filename = here('plots', 'scatterPlot.png'),
   plot = scatterPlot,
   width = 6, # inches
   height = 4)
```

Extra practice 1

Use the **mtcars** data frame to create the following plots

Extra practice 2

Use the mpg data frame to create the following plot

