
Week 3: Week 3: Creating FunctionsCreating Functions
 EMSE 4571: Intro to Programming for Analytics EMSE 4571: Intro to Programming for Analytics

 John Paul Helveston John Paul Helveston

 January 27, 2022 January 27, 2022

1 / 361 / 36

2 / 36

Go to Go to #class#class channel in channel in
Slack for quiz linkSlack for quiz link

Open RStudio first!Open RStudio first!

Rules:Rules:
You may use your notes and RStudioYou may use your notes and RStudio
You may You may notnot use any other resources use any other resources
(e.g. the internet, your classmates,(e.g. the internet, your classmates,
etc.)etc.)

Quiz 2Quiz 2 0505::0000

3 / 363 / 36

Week 3: Week 3: Creating FunctionsCreating Functions
1. Function syntax1. Function syntax

2. Local vs global variables2. Local vs global variables

BREAKBREAK

3. Top-down design3. Top-down design

4. Coding style4. Coding style

4 / 364 / 36

Week 3: Week 3: Creating FunctionsCreating Functions
1. 1. Function syntaxFunction syntax

2. Local vs global variables2. Local vs global variables

BREAKBREAK

3. Top-down design3. Top-down design

4. Coding style4. Coding style

5 / 365 / 36

Basic function syntax
name <- function(arguments) {
 # Do stuff here
 return(something)
}

6 / 36

Basic function syntax
In English:

"name() is a function of arguments that does..."

In Code:

name <- function(arguments) {}

7 / 36

Basic function syntax

"squareRoot() is a function of n that...returns the square root of n"

squareRoot <- function(n) {
 return(n^0.5)
}

squareRoot(64)

#> [1] 8

8 / 36

isPositive <- function(n) {
 return(n > 0)
}

isPositive <- function(n) {
 cat(n > 0)
}

return() and cat() statements

9 / 36

isPositive <- function(n) {
 return(n > 0)
}

return() returns back a value

test <- isPositive(7)
test

TRUE

isPositive <- function(n) {
 cat(n > 0)
}

return() and cat() statements

10 / 36

isPositive <- function(n) {
 return(n > 0)
}

return() returns back a value

test <- isPositive(7)
test

TRUE

isPositive <- function(n) {
 cat(n > 0)
}

cat() prints a value to the console

test <- isPositive(7)

TRUE

test

Error: object 'test' not found

return() and cat() statements

11 / 36

cat() is short for "concatenating"

print_x <- function(x) {
 cat("The value of x is", x)
}

print_x(7)

#> The value of x is 7

print_x_squared <- function(x) {
 cat("The value of x is", x, "and the value of x^2 is", x^2)
}

print_x_squared(7)

#> The value of x is 7 and the value of x^2 is 49

12 / 36

cat() adds a space between values by default

print_x <- function(x) {
 cat("The value of x is", x)
}

print_x(7)

#> The value of x is 7

Modify separator with the sep argument:

print_x <- function(x) {
 cat("The value of x is", x, sep = ": ")
}

print_x(7)

#> The value of x is: 7
13 / 36

Consider these functions:Consider these functions:

f1 <- f1 <- functionfunction(x) {(x) {
 returnreturn(x^(x^33))
}}
f2 <- f2 <- functionfunction(x) {(x) {
 cat(x^ cat(x^33))
}}
f3 <- f3 <- functionfunction(x) {(x) {
 cat(x^ cat(x^33))
 returnreturn(x^(x^44))
}}
f4 <- f4 <- functionfunction(x) {(x) {
 returnreturn(x^(x^33))
 cat(x^ cat(x^44))
}}

What will these lines of code produce?What will these lines of code produce?

Write your answer down first, Write your answer down first, thenthen run run
the code to check.the code to check.

f1(f1(22))
f2(f2(22))
f3(f3(22))
f4(f4(22))

Your turn: Code tracing practiceYour turn: Code tracing practice 0505::0000

14 / 3614 / 36

Week 3: Week 3: Creating FunctionsCreating Functions
1. Function syntax1. Function syntax

2. 2. Local vs global variablesLocal vs global variables

BREAKBREAK

3. Top-down design3. Top-down design

4. Coding style4. Coding style

15 / 3615 / 36

Example:

squareOfX <- function(x) {
 y <- x^2 # y here is "local"
 return(y)
}

squareOfX(3)

#> [1] 9

If you try to call y, you'll get an error:

y

Error: object 'y' not found

Local objects
All objects inside function are "local" - they don't exist in the global
environment

16 / 36

print_x <- function(x) {
 cat(x)
 cat(n) # n is global!
}

n <- 7 # Define n in the *global*
environment

print_x(5)

#> 57

n <- 6

print_x(5)

#> 56

Function behavior shouldn't change
with the same arguments!

Global objects
Global objects exist in the main environment.

NEVER, NEVER, NEVER call global objects inside functions.

17 / 36

print_x <- function(x, n = NULL) {
 cat(x)
 cat(n) # n is local!
}

n <- 7 # Define n in the *global*
environment

print_x(5)

#> 5

n <- 6

print_x(5)

#> 5

Use n as argument:

print_x(5, n)

#> 56

Global objects
All objects inside functions should be arguments to that function

18 / 36

Consider this code:Consider this code:

x <- x <- 77
y <- y <- NULLNULL
f1 <- f1 <- functionfunction(x) {(x) {
 cat(x^ cat(x^33))
 cat(y, x) cat(y, x)
}}
f2 <- f2 <- functionfunction(x, y = (x, y = 77) {) {
 cat(x^ cat(x^33, y), y)
}}
f3 <- f3 <- functionfunction(x, y) {(x, y) {
 cat(x^ cat(x^33))
 cat(y) cat(y)
}}
f4 <- f4 <- functionfunction(x) {(x) {
 returnreturn(x^(x^33))
 cat(x^ cat(x^44))
}}

What will these lines of code produce?What will these lines of code produce?

Write your answer down first, Write your answer down first, thenthen run run
the code to check.the code to check.

f1(f1(22))
f2(f2(22))
f3(f3(22))
f4(f4(22))

Your turn: Code tracing practiceYour turn: Code tracing practice 1010::0000

19 / 3619 / 36

BreakBreak

0505::0000
20 / 3620 / 36

Week 3: Week 3: Creating FunctionsCreating Functions
1. Function syntax1. Function syntax

2. Local vs global variables2. Local vs global variables

BREAKBREAK

3. 3. Top-down designTop-down design

4. Coding style4. Coding style

21 / 3621 / 36

"Top Down" design
1. Break the problem into pieces

2. Solve the "highest level" problem first

3. Then solve the smaller pieces

22 / 36

Example: Given values a and b,
find the value c such that the
triangle formed by lines of
length a, b, and c is a right
triangle (in short, find the
hypotenuse)

23 / 36

Example: Given values a and b,
find the value c such that the
triangle formed by lines of
length a, b, and c is a right
triangle (in short, find the
hypotenuse)

Hypotenuse:

Break the problem into two pieces:

c = √a2 + b2

c = √x

x = a2 + b2

24 / 36

Example: Given values a and b,
find the value c such that the
triangle formed by lines of
length a, b, and c is a right
triangle (in short, find the
hypotenuse)

Hypotenuse:

Break the problem into two pieces:

hypotenuse <- function(a, b) {
 return(sqrt(sumOfSquares(a, b)))
}

sumOfSquares <- function(a, b) {
 return(a^2 + b^2)
}

c = √a2 + b2

c = √x

x = ab + b2

25 / 36

hypotenuse <- hypotenuse <- functionfunction(a, b) {(a, b) {
 returnreturn(sqrt(sumOfSquares(a, b)))(sqrt(sumOfSquares(a, b)))
}}

sumOfSquares <- sumOfSquares <- functionfunction(a, b) {(a, b) {
 returnreturn(a^(a^22 + b^ + b^22))
}}

Your turnYour turn
Create a function, Create a function, isRightTriangle(a, b, c)isRightTriangle(a, b, c) that returns that returns TRUETRUE if the triangle if the triangle
formed by the lines of length formed by the lines of length aa, , bb, and , and cc is a right triangle and is a right triangle and FALSEFALSE otherwise. otherwise.
Use the Use the hypotenuse(a, b)hypotenuse(a, b) function in your solution. function in your solution.

1212::0000

26 / 3626 / 36

Week 3: Week 3: Creating FunctionsCreating Functions
1. Function syntax1. Function syntax

2. Local vs global variables2. Local vs global variables

BREAKBREAK

3. Top-down design3. Top-down design

4. 4. Coding styleCoding style

27 / 3627 / 36

V1:

sumofsquares<-function(a,b)return(a^2 + b^2)

V2:

sum_of_squares <- function(a, b) {
 return(a^2 + b^2)
}

Style matters!
Which is easier to understand?

28 / 36

V1:

sumofsquares<-function(a,b)return(a^2 + b^2)

V2: <- This one is much better!

sum_of_squares <- function(a, b) {
 return(a^2 + b^2)
}

Style matters!
Which is easier to understand?

29 / 36

Use the "Advanced R" style guide:
http://adv-r.had.co.nz/Style.html

Other good style tips on this blog post

30 / 36

http://adv-r.had.co.nz/Style.html
https://www.r-bloggers.com/%F0%9F%96%8A-r-coding-style-guide/

Use <- for assignment, not =
Put spacing around operators
(e.g. x <- 1, not x<-1)
Use meaningful variable names
This applies to file names too
(e.g. "hw1.R" vs. "untitled.R")

Style guide: Objects

31 / 36

https://p4a.seas.gwu.edu/2022-Spring/r1.1-getting-started.html#Use_meaningful_variable_names

Style guide: Functions
Generally, function names should be verbs:

add() # Good
addition() # Bad

Avoid using the "." symbol:

get_hypotenuse() # Good
get.hypotenuse() # Bad

Use curly braces, with indented code inside:

sum_of_squares <- function(a, b) {
 return(a^2 + b^2)
}

32 / 36

Indent by 4 spaces Set line length to 80

33 / 36

onesDigit(x)onesDigit(x): Write a function that: Write a function that
takes an integer and returns its onestakes an integer and returns its ones
digit.digit.

Tests:Tests:

onesDigit(123) == 3onesDigit(123) == 3
onesDigit(7890) == 0onesDigit(7890) == 0
onesDigit(6) == 6onesDigit(6) == 6
onesDigit(-54) == 4onesDigit(-54) == 4

tensDigit(x)tensDigit(x): Write a function that: Write a function that
takes an integer and returns its tenstakes an integer and returns its tens
digit.digit.

Tests:Tests:

tensDigit(456) == 5tensDigit(456) == 5
tensDigit(23) == 2tensDigit(23) == 2
tensDigit(1) == 0tensDigit(1) == 0
tensDigit(-7890) == 9tensDigit(-7890) == 9

Your turnYour turn 1515::0000

34 / 3634 / 36

The mod operator (The mod operator (%%%%) "chops" a) "chops" a
number and returns everything to thenumber and returns everything to the
rightright

123456123456 %% %% 11

#> [1] 0#> [1] 0

123456123456 %% %% 1010

#> [1] 6#> [1] 6

The integer divide operator (The integer divide operator (%/%%/%))
"chops" a number and returns"chops" a number and returns
everything to the everything to the leftleft

123456123456 %/% %/% 11

#> [1] 123456#> [1] 123456

123456123456 %/% %/% 1010

#> [1] 12345#> [1] 12345

Hint #1:Hint #1:

You may want to use You may want to use onesDigit(x)onesDigit(x) as a helper function for as a helper function for tensDigit(x)tensDigit(x)

Hint #2:Hint #2:

35 / 3635 / 36

eggCartons(eggs)eggCartons(eggs): Write a function: Write a function
that takes a non-negative number ofthat takes a non-negative number of
eggs and returns the number of eggeggs and returns the number of egg
cartons required to hold that manycartons required to hold that many
eggs. Each egg carton holds one dozeneggs. Each egg carton holds one dozen
eggs, and you cannot buy fractional eggeggs, and you cannot buy fractional egg
cartons.cartons.

eggCartons(0) == 0eggCartons(0) == 0
eggCartons(1) == 1eggCartons(1) == 1
eggCartons(12) == 1eggCartons(12) == 1
eggCartons(25) == 3eggCartons(25) == 3

militaryTimeToStandardTime(n)militaryTimeToStandardTime(n)::
Write a function that takes an integerWrite a function that takes an integer
between 0 and 23 (representing thebetween 0 and 23 (representing the
hour in hour in military timemilitary time), and returns the), and returns the
same hour in standard time.same hour in standard time.

militaryTimeToStandardTime(0) == 12militaryTimeToStandardTime(0) == 12
militaryTimeToStandardTime(3) == 3militaryTimeToStandardTime(3) == 3
militaryTimeToStandardTime(12) == 12militaryTimeToStandardTime(12) == 12
militaryTimeToStandardTime(13) == 1militaryTimeToStandardTime(13) == 1
militaryTimeToStandardTime(23) == 11militaryTimeToStandardTime(23) == 11

Your turnYour turn 1515::0000

36 / 3636 / 36

http://militarytimechart.com/

