Week 3: Creating Functions

i EMSE 4571: Intro to Programming for Analytics

& Jjohn Paul Helveston

g5 January 27, 2022

1/36

2 /36

Quiz 2

Go to #c Lass channel in
Slack for quiz link

much functions

Open RStudio first!

Rules: ' L

e You may use your notes and RStudio so answer
e You may not use any other resources

(e.g. the internet, your classmates,
etc.)

3/36

Week 3: Creating Functions

1. Function syntax

2. Local vs global variables
S A

3. Top-down design

4, Coding style

4] 36

Week 3: Creating Functions

1. Function syntax

2. Local vs global variables
S A

3. Top-down design

4, Coding style

5/36

Basic function syntax

name <— function(arguments) {

return(something)

}

6 /36

Basic function syntax

In English:

["name() isa function of arguments that does..”"]

In Code:

[name <— function(arguments) {}]

/7 /36

Basic function syntax

["squareRoot () isa function of nthat..returns the square root of n"]

squareRoot <- function(n) {
return(n”0.5)
¥

squareRoot(64)

8 /36

return() and cat () statements

isPositive <- function(n) { isPositive <- function(n) {
return(n > 0) cat(n > 0)

} by

9/36

return() and cat () statements

isPositive <— function(n) {
return(n > 0)
}

isPositive <- function(n) {

}

cat(n > 0)

return() returns back a value

test

TRUE

test <- isPositive(7)]

10/ 36

return() and cat () statements

isPositive <— function(n) { isPositive <-— function(n) {
return(n > 0) cat(n > 0)

¥ }

return() returns back a value cat() prints a value to the console

test <— isPositive(7) {test <— isPositive(7)]

test
TRUE

TRUE
[test]
Error: object 'test' not found

11/ 36

cat () is short for "concatenating”

print_x <- function(x) {
cat("The value of x is", Xx)
+

print_x(7)

#> The value of x is 7

print_x_squared <- function(x) {
cat("The value of x is", x, "and the value of x*2 is", x"2)
}

print_x_squared(7)

#> The value of x is 7 and the value of x*2 1is 49

12 [36

cat() adds a space between values by default

print_x <- function(x) {
cat("The value of x is", Xx)
+

print_x(7)

#> The value of x is 7

Modify separator with the sep argument:

print_x <- function(x) {
cat("The value of x is", x, sep = ": ")
}

print_x(7)

#> The value of x is: 7

Your turn: Code tracing practice [@5 : %}

Consider these functions: What will these lines of code produce?

f1 <— function(x) { Write your answer down first, then run

return(x”3) the code to check.
}

f2 <— function(x) {
cat(x”3)
}

f3 <- function(x) {
cat(x”3)
return(x™4)

}

f4 <— function(x) {
return(x”3)
cat(x™4)

Week 3: Creating Functions

1. Function syntax

2. Local vs global variables
S A

3. Top-down design

4, Coding style

15/ 36

Local objects

All objects inside function are "local" - they don't exist in the global
environment

[squareOfX(3)

Example:

square0fX <- function(x) {
y <— X2 If you try to call y, you'll get an error:
return(y)

b y

16 / 36

Global objects

Global objects exist in the main environment.

NEVER, NEVER, NEVER call global objects inside functions.

print_x <— function(x) { n <-6
cat(x) |
cat(n) print_x(5)
}
n <- 7

Function behavior shouldn't change
with the same arguments!

print_x(5)

17 | 36

Global objects

All objects inside functions should be arguments to that function

print_x <- function(x, n = NULL) { n<—6
cat(x) _
cat(n) # n is local! print_x(5)
+
n <— 7 # Define n in the xglobalx e
environment
orint_x(5) Use n as argument:

~——

#> 5 [print_x(S, n)

18 / 36

Your turn: Code tracing practice [10 : @@}

Consider this code: What will these lines of code produce?

X <= 7 Write your answer down first, then run
y <— NULL
f1 <= function(x) { the code to check.
cat(x”3)
cat(y, x)
¥
f2 <- function(x, y = 7) {
cat(x”3, y)
¥

f3 <- function(x, y) {
cat(x”3)
cat(y)

}

f4 <— function(x) {
return(x”3)
cat(x™4)

}
19/ 36

‘Break

05:00

y
20/ 36

Week 3: Creating Functions

1. Function syntax

2. Local vs global variables
S A

3. Top-down design

4, Coding style

21/ 36

"Top Down" design
1. Break the problem into pleces
2. Solve the "highest level" problem first

3. Then solve the smaller pieces

22 [36

Example: Given values a and b,
find the value c such that the
triangle formed by lines of
length a, b, and c is a right
triangle (in short, find the
hypotenuse)

23/ 36

Example: Given values a and b, o 5 5

find the value c such that the Hypotenuse: ¢ = \/CL + b
triangle formed by lines of . .
length a, b, and c is a right Break the problem into two pieces:
triangle (in short, find the

hypotenuse) Cc — \/5

T = a’ + b

24 | 36

Example: Given values a and b, L 5 5
find the value c such that the Hypotenuse: ¢ = \/CL +b
triangle formed by lines of . .
length a, b, and c is a right Break the problem into two pieces:
triangle (in short, find the
hypot
ypotenuse) Cc — \/5
[hypotenuse <— function(a, b) { }
return(sqrt(sum0fSquares(a, b)))
}
r = a’ + b?
sumOfSquares <— function(a, b) {
return(a”™2 + b"2) }
¥

25/ 36

Your turn [12:@@J

Create a function, isRightTriangle(a, b, c) thatreturns TRUE if the triangle
formed by the lines of length a, b, and c is a right triangle and FALSE otherwise.
Use the hypotenuse(a, b) function in your solution.

hypotenuse <- function(a, b) {
return(sqrt(sum0fSquares(a, b)))

}

sumOfSquares <- function(a, b) {
return(a”2 + b”"2)
}

26 / 36

Week 3: Creating Functions

1. Function syntax

2. Local vs global variables
BREAK

3. Top-down design

4. Coding style

Style matters!

Which iIs easier to understand?

V1:

[sumofsquares<—function(a,b)return(aAz + b™2)]

V2:

sum_of_squares <- function(a, b) {
return(a”2 + b”2)
}

28 [36

Style matters!

Which iIs easier to understand?

V1:

[sumofsquares<—function(a,b)return(aAZ + b™2)]

V2: < This one is muchbetter!

sum_of_squares <— function(a, b) {
return(a”~2 + b”"2)
¥

29 [36

Use the "Advanced R" style guide:
http://adv-r.had.co.nz/Style.html

Other good style tips on this blog post

30/ 36

http://adv-r.had.co.nz/Style.html
https://www.r-bloggers.com/%F0%9F%96%8A-r-coding-style-guide/

Style guide: Objects

Using = instead of <- for assignment

=

Use <- for assignment, not =
Put spacing around operators
(e.g. x <= 1, not x<-1)

Use meaningful variable names
This applies to file names too
(e.g. "hwl.R" vs. "untitled.R")

M -

Né‘don't do that here

31/ 36

https://p4a.seas.gwu.edu/2022-Spring/r1.1-getting-started.html#Use_meaningful_variable_names

Style guide: Functions

Generally, function names should be verbs:

add ()
addition()

Avoid using the "." symbol:

get_hypotenuse()
get.hypotenuse()

Use curly braces, with indented code inside:

sum_of_squares <- function(a, b) {
return(a”™2 + b”2)

¥

32 /36

Indent by 4 spaces

Options

Ceneral m Display Saving Completion Diagnostics

Code

+ Insert spaces for tab

7 Appearance Tab width 4

Pane Layout + Insert matching parens/quotes

< Auto-indent code after paste

Packages
« Vertically align arguments in auto-inde
@' R Markdown Soft-wrap R source files
@5 Sweave Continue comment when inserting new line
Surround selection on text insertion: Quotes & Brackets |5
¥ Spelling
Keybindings: Default |4 Modify Keybaard Shortcuts.,
W Git/sw
o~ Execution

%2/ Publishing
< Always save R scripts before sourcing

Terminal .

= Focus console after executing from source
Ctrl4+Enter executes: Multi-line R statement v
Snippets

~ Enable code snippets Edi Snippets... | 7

| OK | Cancel Apply

Set line length to 80

Options

General
Code
B Appearance
Pane Layout
Packages
@ R Markdown
@ sweave

AR

+ 3pelling

W cisvn

S Publishing

. Terminal

Editing m Saving Completion Diagnostics

General

+ Highlight selected word

Highlight selected line

+| Show margin

Margin column 80

Show indent guides

< Blinking cursor
Show syntax highlighting in console input
Allow scroll past end of document

Highlight R function calls

Fold Style: StartOnly |5

Console
Limit length of lines displayed in console to: |1000

AMSI Escape Codes: Show ANSI colors &

OK Cancel Apply

33 /36

Your turn [15:®@J

onesDigit(x): Write a function that tensDigit(x): Write a function that
takes an integer and returns its ones takes an integer and returns its tens
digit. digit.

Tests: Tests:

e onesDigit(123) == 3 e tensDigit(456) == 5

e onesDigit(7890) == 0 e tensDigit(23) == 2

e onesDigit(6) == 6 e tensDigit(1) == 0

e onesDigit(-54) == 4 e tensDigit(-7890) == 9

34 /36

Hint #1:

You may want to use onesDigit(x) as a helper function for tensDigit(x)

Hint #2:
The mod operator (%%) "chops" a The integer divide operator (%/%)
number and returns everything to the "chops” a number and returns
right everything to the /eft

123456 123456 %/% 1

123456 %% 10 123456 %/% 10

Your turn

eggCartons(eggs): Write a function
that takes a non-negative number of
eggs and returns the number of egg
cartons required to hold that many
eggs. Each egg carton holds one dozen
eggs, and you cannot buy fractional egg
cartons.

e eggCartons
e eggCartons
e eggCartons
e eggCartons

)::O

—

0
1)

12
25

— p— p— p—

) =
5) =

[15:@0}

militaryTimeToStandardTime(n):
Write a function that takes an integer
between 0 and 23 (representing the
hour in military time), and returns the
same hour in standard time.

militaryTimeToStandardTime(0)

militaryTimeToStandardTime(3)

militaryTimeToStandardTime(12)
(1
(2

in i
in
W _\

N

militaryTimeToStandardTime(13)
3)

T L
oo
= —_ =

militaryTimeToStandardTime

36 /36

http://militarytimechart.com/

