
Week 5: Week 5: IterationIteration
 EMSE 4571: Intro to Programming for Analytics EMSE 4571: Intro to Programming for Analytics

 John Paul Helveston John Paul Helveston

 February 10, 2022 February 10, 2022

1 / 271 / 27

Go to Go to #class#class channel in channel in
Slack for quiz linkSlack for quiz link

Open RStudio first!Open RStudio first!

Rules:Rules:
You may use your notes and RStudioYou may use your notes and RStudio
You may You may notnot use any other resources use any other resources
(e.g. the internet, your classmates,(e.g. the internet, your classmates,
etc.)etc.)

Quiz 3Quiz 3 0505::0000

2 / 272 / 27

Notes on common problems in homeworks
Use almostEqual() in test cases with numbers

This could fail on you:

stopifnot(getTheCents(2.45) == 45)

Instead, use:

stopifnot(almostEqual(getTheCents(2.45), 45))

3 / 27

Notes on common problems in homeworks

Check your full script for errors

Restart R and run your whole code from the top
Sequence matters: Have you called a function before defining it?

4 / 27

Reconsidering productivity

5 / 27

Week 5: Week 5: IterationIteration
1. for loops1. for loops

2. breaking and skipping2. breaking and skipping

BREAKBREAK

3. while loops3. while loops

6 / 276 / 27

Week 5: Week 5: IterationIteration
1. 1. for loopsfor loops

2. breaking and skipping2. breaking and skipping

BREAKBREAK

3. while loops3. while loops

7 / 277 / 27

Last week:

if statements
else statements

This week:

for loops
while loops
break statements
next statements

"Flow Control"
Code that alters the otherwise linear flow of operations in a program.

8 / 27

The for loop
Basic format:

for (item in sequence) {
 # Do stuff with item

 # Loop stops after last item
}

Flow chart:

9 / 27

1. Use the seq() function

seq(1, 10)

#> [1] 1 2 3 4 5 6 7 8 9 10

seq(1, 10, by = 2)

#> [1] 1 3 5 7 9

2. Use the : operator (step size = 1)

1:10

#> [1] 1 2 3 4 5 6 7 8 9 10

Making a sequence
(Side note: these are vectors...that's next week - read ahead!)

Two ways to make a sequence:

10 / 27

What will this function print?

for (i in 1:5) {
 if ((i %% 2) == 0) {
 cat('--')
 } else if ((i %% 3) == 0) {
 cat('----')
 }
 cat(i, '\n')
}

Quick code tracing 02:00

11 / 27

What will this function print?

n <- 6
for (i in seq(n)) {
 cat('|')
 for (j in seq(1, n, 2)) {
 cat('*')
 }
 cat('|', '\n')
}

Quick code tracing 02:00

12 / 27

Your turnYour turn
1) 1) sumFromMToN(m, n)sumFromMToN(m, n): Write a function that sums the total of the integers between : Write a function that sums the total of the integers between mm and and nn..
ChallengeChallenge: Try solving this without a loop!: Try solving this without a loop!

sumFromMToN(5, 10) == (5 + 6 + 7 + 8 + 9 + 10)sumFromMToN(5, 10) == (5 + 6 + 7 + 8 + 9 + 10)
sumFromMToN(1, 1) == 1sumFromMToN(1, 1) == 1

2) 2) sumOfOddsFromMToN(m, n)sumOfOddsFromMToN(m, n): Write a function that sums every : Write a function that sums every oddodd integer between integer between mm and and nn..

sumOfOddsFromMToN(4, 10) == (5 + 7 + 9)sumOfOddsFromMToN(4, 10) == (5 + 7 + 9)
sumOfOddsFromMToN(5, 9) == (5 + 7 + 9)sumOfOddsFromMToN(5, 9) == (5 + 7 + 9)

1515::0000

13 / 2713 / 27

1. for loops1. for loops

2. 2. breaking and skippingbreaking and skipping

BREAKBREAK

3. while loops3. while loops

Week 5: Week 5: IterationIteration

14 / 2714 / 27

Note: break doesn't require ()

for (val in 1:5) {
 if (val == 3) {
 break
 }
 cat(val, '\n')
}

1
2

Breaking out of a loop
Force a loop to stop with break

15 / 27

What will this code print?

for (i in 1:3) {
 cat('|')
 for (j in 1:5) {
 if (j == 3) {
 break
 }
 cat('*')
 }
 cat('|', '\n')
}

Quick code tracing 02:00

16 / 27

Note: next doesn't require ()

for (val in 1:5) {
 if (val == 3) {
 next
 }
 cat(val, '\n')
}

1
2
4
5

Skipping iterations
Skip to the next iteration in a loop with next

17 / 27

What will this code print?

for (i in 1:3) {
 cat('|')
 for (j in 1:5) {
 if (j == 3) {
 next
 }
 cat('*')
 }
 cat('|', '\n')
}

Quick code tracing 02:00

18 / 27

Your turnYour turn
sumOfOddsFromMToNMax(m, n, max)sumOfOddsFromMToNMax(m, n, max): Write a function that sums every : Write a function that sums every oddodd integer integer
from from mm to to nn up until the sum is less than or equal to the value up until the sum is less than or equal to the value maxmax. Your solution should. Your solution should
use both use both breakbreak and and nextnext statements. statements.

sumOfOddsFromMToNMax(1, 5, 4) == (1 + 3)sumOfOddsFromMToNMax(1, 5, 4) == (1 + 3)
sumOfOddsFromMToNMax(1, 5, 3) == (1)sumOfOddsFromMToNMax(1, 5, 3) == (1)
sumOfOddsFromMToNMax(1, 5, 10) == (1 + 3 + 5)sumOfOddsFromMToNMax(1, 5, 10) == (1 + 3 + 5)

1515::0000

19 / 2719 / 27

BreakBreak

0505::0000
20 / 2720 / 27

1. for loops1. for loops

2. breaking and skipping2. breaking and skipping

BREAKBREAK

3. 3. while loopswhile loops

Lame joke time:Lame joke time:
A friend calls her programmer roommateA friend calls her programmer roommate
and said, "while you're out, buy someand said, "while you're out, buy some
milk"...milk"...

...and she never returned home....and she never returned home.

Week 5: Week 5: IterationIteration

21 / 2721 / 27

The while loop
Basic format:

while (CONDITION) {
 # Do stuff here

 # Update condition
}

Here's the general idea:

22 / 27

Consider this function:

f <- function(x) {
 n <- 1
 while (n < x) {
 cat(n, '\n')
 n <- 2*n
 }
}

What will this code print?

f(5)
f(10)
f(50)
f(60)
f(64)

Quick code tracing 02:00

23 / 27

Use for loops when the number of
iterations is known.

1. Build the sequence
2. Iterate over it

for (i in 1:5) { # Define the sequence
 cat(i, '\n')
}

#> 1
#> 2
#> 3
#> 4
#> 5

Use while loops when the number
of iterations is unknown.

1. Define stopping condition
2. Iterate until condition is met

i <- 1
while (i <= 5) { # Define stopping
condition
 cat(i, '\n')
 i <- i + 1 # Update condition
}

#> 1
#> 2
#> 3
#> 4

for vs. while

24 / 27

1) 1) isMultipleOf4Or7(n)isMultipleOf4Or7(n)

Write a function that returns Write a function that returns TRUETRUE if if nn is a is a
multiple of 4 or 7 and multiple of 4 or 7 and FALSEFALSE otherwise. otherwise.

isMultipleOf4Or7(0) == FALSEisMultipleOf4Or7(0) == FALSE
isMultipleOf4Or7(1) == FALSEisMultipleOf4Or7(1) == FALSE
isMultipleOf4Or7(4) == TRUEisMultipleOf4Or7(4) == TRUE
isMultipleOf4Or7(7) == TRUEisMultipleOf4Or7(7) == TRUE
isMultipleOf4Or7(28) == TRUEisMultipleOf4Or7(28) == TRUE

2) 2) nthMultipleOf4Or7(n)nthMultipleOf4Or7(n)

Write a function that returns the nthWrite a function that returns the nth
positive integer that is a multiple of eitherpositive integer that is a multiple of either
4 or 7.4 or 7.

nthMultipleOf4Or7(1) == 4nthMultipleOf4Or7(1) == 4
nthMultipleOf4Or7(2) == 7nthMultipleOf4Or7(2) == 7
nthMultipleOf4Or7(3) == 8nthMultipleOf4Or7(3) == 8
nthMultipleOf4Or7(4) == 12nthMultipleOf4Or7(4) == 12
nthMultipleOf4Or7(5) == 14nthMultipleOf4Or7(5) == 14
nthMultipleOf4Or7(6) == 16nthMultipleOf4Or7(6) == 16

Your turn: Write functionsYour turn: Write functions 1515::0000

25 / 2725 / 27

isPrime(n)isPrime(n): Write a function that takes a: Write a function that takes a
non-negative integer, non-negative integer, nn, and returns , and returns TRUETRUE
if it is a prime number and if it is a prime number and FALSEFALSE
otherwise. Here's some test cases:otherwise. Here's some test cases:

isPrime(1) == FALSEisPrime(1) == FALSE
isPrime(2) == TRUEisPrime(2) == TRUE
isPrime(7) == TRUEisPrime(7) == TRUE
isPrime(13) == TRUEisPrime(13) == TRUE
isPrime(14) == FALSEisPrime(14) == FALSE

nthPrime(n)nthPrime(n): Write a function that takes: Write a function that takes
a non-negative integer, a non-negative integer, nn, and returns the, and returns the
nth prime number, where nth prime number, where nthPrime(1)nthPrime(1)
returns the first prime number (2). Hint:returns the first prime number (2). Hint:
use the function use the function isPrime(n)isPrime(n) as a helper as a helper
function!function!

nthPrime(1) == 2nthPrime(1) == 2
nthPrime(2) == 3nthPrime(2) == 3
nthPrime(3) == 5nthPrime(3) == 5
nthPrime(4) == 7nthPrime(4) == 7
nthPrime(7) == 17nthPrime(7) == 17

Your turnYour turn 2020::0000

26 / 2726 / 27

HW 5
Trickier turtles

Read about Happy Numbers

27 / 27

https://p4a.seas.gwu.edu/2022-Spring/hw5-iteration.html
https://en.wikipedia.org/wiki/Happy_number

