Week 9: Data Frames

1 EMSE 4571: Intro to Programming for Analytics

& Jjohn Paul Helveston

g8 March 24, 2022

1/58

0.00

0.25 0.50 0.75 1.00
Midterm Score

2 /58

40

30

Average days late
N
o

10

0.00

0.25

0.50
Midterm Score

0.75

1.00

3/58

Revised late policy for HW 9-12

- Submissions by 6am on due date: full credit

- Submissions by 6am on following Monday (3 days late): 50% credit

- Later sumissions: not graded (i.e. a 0)

4 /58

AMG Grading

5/58

https://p4a.seas.gwu.edu/2022-Spring/syllabus.html#72_AMG_Grading

Before we start

Make sure you have these packages installed and loaded:

install.packages("stringr")
install.packages("dplyr")
install.packages("ggplot2")
install.packages('"readr")
install.packages("here")

(At the top of the notes blank.R file)

Remember: you only need to install them once!

6 /58

"The purpose of computing | Fr=rges

Is insight, not numbers" e LW
- Richard Hammin S ™

/7 /58

https://en.wikipedia.org/wiki/Richard_Hamming

Week 9: Data Frames

1. Basics
2. Slicing
BREAK

3. External data

8 /58

Week 9: Data Frames

1. Basics
2. Slicing
BREAK

3. External data

9/58

The data frame...in Excel

@020 M EH v~ G

From
HTBRIL

117

W oM sl oW s W g e

Home

A
firstMame
John
Paul
Ringo
George

Insert

= |
=

From MNew Database
Text

Y
v

Query

B

lastName
Lenmon
McCartney
Starr
Harrison

Page Layout

|

F o | -

e |

Refresh
All

C

instrument
guitar

bass
drums
guitar

Formulas
< | Connections

T LGS

vearQfBirth
1540
1942
1540
1543

Data

v Ay

7
At

E

deceased
TRUE
FALSE
FALSE
TRUE

Review

Saort

View

- FaY (P
? L 2dr

Filter *‘ir;\ Advanced

Te

Ca

10/ 58

The data frame...In R

beatles <- tibb
firstName
lastName
instrument
yearOfBirth
deceased

)

beatles

le(

c("John", "Paul", "Ringo", "George"),
c("Lennon", "McCartney", "Starr", "Harrison"),
c("quitar", "bass", "drums", "guitar"),
c(1940, 1942, 1940, 1943),

c(TRUE, FALSE, FALSE, TRUE)

#> # A tibble:
#> firstName
#> <chr>

#> John
#> Paul
#> 3 Ringo
#> 4 George

4 x 5

lastName instrument yearOfBirth deceased
<chr> <chr> <dbl> <1gl>
Lennon guitar 1940 TRUE
McCartney bass 1942 FALSE
Starr drums 1940 FALSE
Harrison gquitar 1943 TRUE

11/58

The data frame...in RStudio

[view(beatles)

E

1
2
3
4

firstName
Jahn

Paul
Ringo

Ceorge

Filter
lastName
Lennon
McCartney
Starr

Harrison

instrument
quitar

bass
drums

quitar

yvearOfBirth
1940
1942
1940
1943

deceased
TRUE
FALSE
FALSE
TRUE

12 / 58

Columns: Vectors of values (must be same data type)

[beatles]

#> # A tibble: 4 x 5
#> firstName lastName instrument yearOfBirth deceased
#> <chr> <chr> <chr> <dbl> <1gl>

#> 1 John Lennon guitar 1940 TRUE
#> 2 Paul McCartney bass 1942 FALSE
#> 3 Ringo Starr drums 1940 FALSE
#> 4 George Harrison gquitar 1943 TRUE

Extract a column using $

beatles$firstName

#> [1] "John" "Paul" "Ringo"

13 /58

Rows: Information about individual observations

Information about John Lennon is in the first row:

[beatles[l,]

#> # A tibble: 1 x 5
#> firstName lastName instrument yearOfBirth deceased

#> <chr> <chr> <chr> <db1l> <1lgl>
#> 1 John Lennon guitar 1940 TRUE

Information about Paul McCartney is in the second row:

beatles[2,]

#> # A tibble: 1 x 5
#> firstName lastName instrument yearOfBirth deceased

#> <chr> <chr> <chr> <db1l> <1lgl>
#> 1 Paul McCartney bass 1942 FALSE

Make a data frame with data. frame()

beatles <- data.frame(
firstName = c("John", "Paul", "Ringo", "George"),
lastName = c("Lennon", "McCartney", "Starr", "Harrison"),
instrument = c("guitar", "bass", "drums", '"guitar"),
yearOfBirth = c(1940, 1942, 1940, 1943),
deceased = c(TRUE, FALSE, FALSE, TRUE)

)

beatles

firstName lastName instrument yearOfBirth deceased
John Lennon guitar 1940 TRUE
Paul McCartney bass 1942 FALSE

Ringo Starr drums 1940 FALSE
George Harrison guitar 1943 TRUE

15 /58

Make a data frame with tibble()

library(dplyr)

beatles <- tibb

le(
firstName = c("John", "Paul", "Ringo", "George"),
lastName = c("Lennon", "McCartney", "Starr", "Harrison"),
instrument = c("guitar", "bass", "drums", '"guitar"),
yearOfBirth = c(1940, 1942, 1940, 1943),
deceased = c(TRUE, FALSE, FALSE, TRUE)
)
beatles

#> # A tibble:
#> firstName
#> <chr>

#> John

#> Paul

#> 3 Ringo

#> 4 George

4 x 5
lastName deceased
<lgl>
TRUE
FALSE
FALSE

TRUE

instrument yearOfBirth
<chr> <chr> <db1>
Lennon guitar
McCartney bass
Starr drums
Harrison guitar

1940

1942
1940
1943

Why | use tibble() instead of data. frame()

1. The tibble() shows the dimensions and data type.

2. A tibble will only print the first few rows of data when you enter the object name
Example: faithful vs. as_tibble(faithful)

3. Columns of class character are never converted into factors (don't worry about
this for now...just know that tibbles make life easier when dealing with character
type columns).

Note: | use the word "data frame" to refer to both tibble() and data. frame()
objects

17 | 58

Data frame vectors must have the same length

beatles <— tibble(
firstName = c("John", "Paul", "Ringo", "George", "Bob"), # Added "Bob"
lastName = c("Lennon", "McCartney", "Starr", "Harrison"),
instrument = c("guitar", "bass", "drums", '"guitar"),
yearOfBirth = c(1940, 1942, 1940, 1943),
deceased = c(TRUE, FALSE, FALSE, TRUE)
)

Error:
I Tibble columns must have compatible sizes.

e Size 5: Existing data.
e Size 4: Column " lastName .
i Only values of size one are recycled.

18 / 58

Use NA for missing values

beatles <- tibble(
firstName = c("John", "Paul", "Ringo", "George", "Bob"),
lastName = c("Lennon", "McCartney", "Starr", "Harrison", NA), # Added NAs
instrument = c("guitar", "bass", "drums", '"guitar", NA),
yearOfBirth = c(1940, 1942, 1940, 1943, NA),
deceased = c(TRUE, FALSE, FALSE, TRUE, NA)
)
beatles

#> # A tibble: 5 x 5

#> firstName lastName instrument yearOfBirth deceased
#> <chr> <chr> <chr> <dbl> <1gl>
#> 1 John Lennon guitar 1940 TRUE

#> 2 Paul McCartney bass 1942 FALSE
#> 3 Ringo Starr drums 1940 FALSE
#> 4 George Harrison gquitar 1943 TRUE
#> 5 Bob <NA> <NA> NA NA

19 /58

Dimensions: nrow(),ncol(),&dim()

S
~——

nrow(beatles) # Number of rows

#> [1] 5

ncol(beatles) # Number of columns

)
~——

#> [1] 5

|

~——

dim(beatles) # Number of rows and columns

#> [1] 5 5

20 /58

Use names () or colnames () to see the available variables

Get the names of columns:

[names(beatles)]

#> [1] "firstName" "lastName" "instrument" "yearOfBirth" "deceased"

[colnames(beatles)]

#> [1] "firstName" "lastName" "instrument" "yearOfBirth" "deceased"

Get the names of rows (rarely needed):

rownames (beatles)

#> [1] II1II II2II II3II II4II II5II

21/ 58

Changing the column names

Change the column names with names () or colnames():

names (beatles) <- c('one', 'two', 'three', 'four',6 'five')
beatles

#> # A tibble: 5 x 5

#> one two three four
#> <chr> <chr> <chr> <dbl>
#> 1 John Lennon guitar 1940

#> 2 Paul McCartney bass 1942
#> 3 Ringo Starr drums 1940
#> 4 George Harrison guitar 1943
#> 5 Bob <NA> <NA> NA

22 [58

Changing the column names

Make all the column names upper-case:

colnames(beatles) <— stringr::str_to_upper(colnames(beatles))
beatles

#> # A tibble: 5 x 5

#> FIRSTNAME LASTNAME INSTRUMENT YEAROFBIRTH DECEASED
#> <chr> <chr> <chr> <dbl> <1gl>
#> 1 John Lennon guitar 1940 TRUE

#> 2 Paul McCartney bass 1942 FALSE
#> 3 Ringo Starr drums 1940 FALSE
#> 4 George Harrison gquitar 1943 TRUE
#> 5 Bob <NA> <NA> NA NA

23 /58

Combine data frames by columns using bind cols()

Note: bind_cols() is from the dplyr library

names <- tibble(
firstName
lastName

c("John", "Paul", "Ringo", "George"),
c("Lennon", "McCartney", "Starr", "Harrison"))

instruments <- tibble(
instrument = c("quitar", '"bass", "drums", "guitar"))

bind_cols(names, instruments)

#> # A tibble: 4 x 3
#> firstName lastName instrument
#> <chr> <chr> <chr>

#> 1 John Lennon guitar
#> 2 Paul McCartney bass
#> 3 Ringo Starr drums
#> 4 George Harrison guitar

24 | 58

Combine data frames by rows using bind rows ()

Note: bind_rows () is from the dplyr library

membersl <— tibble(
firstName = c("John", "Paul"),
lastName c("Lennon", "McCartney"))

members2 <- tibble(
firstName = c("Ringo", "George"),
lastName c("Starr", "Harrison"))

bind_rows(membersl, members2)

#> # A tibble: 4 x 2
#> firstName lastName
#> <chr> <chr>
#> John Lennon

#> Paul McCartney
#> 3 Ringo Starr
#> 4 George Harrison

Note: bind rows () requires the same columns names:

colnames (members2) <- c("firstName", "LastName")
bind_rows(membersl, members2)

#> # A tibble: 4 x 3
#> firstName lastName LastName
#> <chr> <chr> <chr>

#> 1 John Lennon <NA>

#> 2 Paul McCartney <NA>

#> 3 Ringo <NA> Starr
#> 4 George <NA> Harrison

Note how <NA>s were created

26 / 58

Your turn [08 : 00}

Answer these questions using the animals_farmand animals_pet data frames:

1. Write code to find how many rows are in the animals_farm data frame?

2. Write code to find how many columns are in the animals_pet data frame?

3. Create a new data frame, animals, by combining animals_farm and
animals_pet.

. Change the column names of animals to title case.

. Add a new column to animals called type that tells if an animalisa "farm" or
“pet' animal.

(@ [S

27 [58

Week 9: Data Frames

1. Basics
2. Slicing
BREAK

3. External data

28 [58

Access data frame columns using the $ symbol

[beatles$firstName]

#> [1] "John" "Paul" "Ringo" '"George"

[beatles$lastName]

#> [1] "Lennon" "McCartney" "Starr" "Harrison"

29 /58

Creating new variables with the $ symbol

Add the hometown of the bandmembers:

beatles

beatles$hometown <- 'Liverpool']

#> # A tibble: 4 x 6

#> firstName lastName instrument yearOfBirth deceased hometown
#> <chr> <chr> <chr> <dbl> <1gl> <chr>

#> 1 John Lennon guitar 1940 TRUE Liverpool

#> 2 Paul McCartney bass 1942 FALSE Liverpool
#> 3 Ringo Starr drums 1940 FALSE Liverpool
#> 4 George Harrison gquitar 1943 TRUE Liverpool

30 /58

Creating new variables with the $ symbol

Add a new alive variable:

beatles

beatles$alive <— c(FALSE, TRUE, TRUE, FALSE)]

#> # A tibble: 4 x 7

#> firstName lastName instrument yearOfBirth deceased hometown alive
#> <chr> <chr> <chr> <dbl> <1gl> <chr> <lgl>
#> 1 John Lennon guitar 1940 TRUE Liverpool FALSE

#> 2 Paul McCartney bass 1942 FALSE Liverpool TRUE
#> 3 Ringo Starr drums 1940 FALSE Liverpool TRUE
#> 4 George Harrison gquitar 1943 TRUE Liverpool FALSE

31/ 58

You can compute new variables from current ones

Compute and add the age of the bandmembers:

beatles$age <— 2020 - beatles$yearOfBirth
beatles

#> # A tibble: 4 x 8

#> firstName lastName instrument yearOfBirth deceased hometown alive age
#> <chr> <chr> <chr> <dbl> <1gl> <chr> <lgl> <dbl>
#> 1 John Lennon guitar 1940 TRUE Liverpool FALSE 80

#> 2 Paul McCartney bass 1942 FALSE Liverpool TRUE 78
#> 3 Ringo Starr drums 1940 FALSE Liverpool TRUE 80
#> 4 George Harrison gquitar 1943 TRUE Liverpool FALSE 77

32 /58

Access elements by index: DF [row, column]

General form for indexing elements:

[DF[row, column]]

Select the element in row 1, column 2: Select the elements in rows 1 & 2 and
columns 2 & 3:

[beatles[l, 2]

[beatles[c(l, 2), (2, 3)]

#> # A tibble: 1 x 1]

A tibble: 2 x 2
lastName instrument

#> lastName

#> <chr>
#> 1 Lennon

<chr> <chr>
1 Lennon guitar
2 McCartney bass

33 /58

Leave row or column "blank" to select all

[beatles[c(l, 2),] # Selects all COLUMNS for rows 1 & 2

A tibble: 2 x 5
firstName lastName instrument yearOfBirth deceased

<chr> <chr> <chr> <dbl> <lgl>
1 John Lennon guitar 1940 TRUE
2 Paul McCartney bass 1942 FALSE

beatles[,c(1, 2)] # Selects all ROWS for columns 1 & 2

#> # A tibble: 4 x 2
#> firstName lastName
#> <chr> <chr>

#> 1 John Lennon

#> 2 Paul McCartney
#> 3 Ringo Starr

#> 4 George Harrison

34 /58

Negative indices exclude row / column

[beatles[—l,] # Select all ROWS except the first

A tibble: 3 x 5
firstName lastName instrument yearOfBirth deceased
<chr> <chr> <chr> <dbl> <lgl>

1 Paul McCartney bass 1942 FALSE
2 Ringo Starr drums 1940 FALSE
3 George Harrison gquitar 1943 TRUE

beatles[,-1] # Select all COLUMNS except the first

#> # A tibble: 4 x 4

#> lastName instrument yearOfBirth deceased
#> <chr> <chr> <dbl> <1gl>
#> 1 Lennon guitar 1940 TRUE

#> 2 McCartney bass 1942 FALSE
#> 3 Starr drums 1940 FALSE
#> 4 Harrison guitar 1943 TRUE

35/58

You can select columns by their names

Note: you don't need the comma to select an entire column

One column Multiple columns

beatles['firstName']

] [beatles[c('firstName', 'lastName')]

#> # A tibble: 4 x 1
#> firstName

#> <chr>

#> John

#> # A tibble: 4 x 2
#> firstName lastName
#> <chr> <chr>

#> 1 John Lennon

#> 2 Paul McCartney
#> 3 Ringo Starr

#> 4 George Harrison

#> 2 Paul
#> 3 Ringo
#> 4 George

36 /58

Use logical indices to filter rows

Which Beatles members are still alive?
Create a logical vector using the deceased column:

[beatles$deceased == FALSE]

#> [1] FALSE TRUE TRUE FALSE

Insert this logical vector in the ROW position of beatles|, |:

[beatles[beatles$deceased == FALSE,]]

A tibble: 2 x 5
firstName lastName instrument yearOfBirth deceased

<chr> <chr> <chr> <db1> <lgl>
1 Paul McCartney bass 1942 FALSE
2 Ringo Starr drums 1940 FALSE

37 /58

Your turn [10:00}

Answer these questions using the beat les data frame:

1. Create a new column, playsGuitar, which is TRUE if the band member plays the
guitar and FALSE otherwise.

2. Filter the data frame to select only the rows for the band members who have four-
letter first names.

3. Create a new column, ful LName, which contains the band member's first and last
name separated by a space (e.g. "John Lennon")

38 /58

Break

05:00

J
39 /58

Week 9: Data Frames

1. Basics
2. Slicing
BREAK

3. External data

40 / 58

Getting data into R

Options:
1. Load external packages

2. Read in external files (usually a . csv* file)

*csv = "comma-separated values”

41/ 58

Data from an R package

{1ibrary(ggplot2)]

See which data frames are available in a package:

[data(package = "ggplot2")]

42 | 58

Find out about package data sets with 7

[?msleep

msleep {ggplot2}

An updated and expanded version of the mammals sleep dataset

Description

This is an updated and expanded version of the mammals sleep dataset. Updated sleep times

43 [58

Previewing data frames: ms Leep

Look at the data in a "spreadsheet"-like way:

[view(msleep)

This is "read-only" so you can't corrupt the data &

44 [58

My favorite quick summary: g Limpse ()

Preview each variable with str() or glimpse()

[glimpse(msleep)

Rows: 83
Columns: 11

$

$
$
$
$
$
$
$
$
$
$

name
genus

vore

order
conservation
sleep_total
sleep_rem
sleep_cycle
awake
brainwt
bodywt

<chr>
<chr>
<chr>
<chr>
<chr>
<db1>
<db1>
<db1>
<db1>
<db1>
<db1>

"Cheetah", "Owl monkey", "Mountain beaver", "Greater short-t
"Acinonyx", "Aotus', "Aplodontia', "Blarina', "Bos", "Bradyp
"carni", "omni", "herbi", "omni", "herbi", "herbi", "carni",
“"Carnivora", "Primates", "Rodentia', "Soricomorpha", "Artiod
"1c", NA, "nt", "1c", "domesticated", NA, "vu", NA, "domesti
12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1, 3.0, 5.3,
NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0.6, 0.8, 0.7
NA, NA, NA, 0.1333333, 0.6666667, 0.7666667, 0.3833333, NA,

11.90, 7.00, 9.60, 9.10, 20.00, 9.60, 15.30, 17.00, 13.90, 2
NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0.07000, 0.09
50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.490, 0.045,

45 [58

Also very useful for quick checks: head () and tail()

View the first 6 rows with head () View the last 6 rows with tail()

head(msleep)] [tail(msleep)]

#> # A tibble: 6 x 11 #> # A tibble: 6 x 11

#> ENIS genus #> name genus vore

#> <chr> <chr> #> <chr> <chr> <chr>
#> 1 Cheetah Acinonyx #> 1 Tenrec Tenrec omni

#> 2 Owl monkey Aotus #> 2 Tree shrew Tupaia omni
#> 3 Mountain beaver Aplodontigm #> 3 Bottle-nosed dolphin Tursiops carni
#> 4 Greater short-tailed shrew Blarina #> 4 Genet Genetta carni
#> 5 Cow Bos #> 5 Arctic fox Vulpes carni
#> 6 Three-toed sloth Bradypus #> 6 Red fox Vulpes carni

46 [58

Importing an external data file

Note the data. csv file in your data folder. If you must open it in Excel:
e DO NOT double-click it! e Make a copy
e DO NOT open itin Excel! e Open the copy

Excel can corrupt your data!

47 | 58

Steps to importing external data files

1. Create a path to the data

library(here)
pathToData <- here('data', 'data.csv')

pathToData

#> [1] "/Users/jhelvy/gh/0gw/P4A/2022-Spring/class/9-data-frames/data/data.csv"

2. Import the data

library(readr)
df <- read_csv(pathToData)

48 [58

Using the here package to make file paths

The here() function builds the path to your root to your working directory
(this is where your .Rproj file lives!)

[here()

#> [1] "/Users/jhelvy/gh/0gw/P4A/2022-Spring/class/9-data—-frames"

The here() function builds the path to files inside your working directory

path_to_data <- here('data', 'data.csv')
path_to_data

#> [1] "/Users/jhelvy/gh/0gw/P4A/2022-Spring/class/9-data-frames/data/data.csv"

49 [58

Avoid hard-coding file paths!

(they can break on different computers)

path_to_data <- 'data/data.csv'
path_to_data

50 /58

Use the here package
to make file paths

Art by Allison Horst

51/ 58

https://www.allisonhorst.com/

Back to reading in data

path_to_data <- here('data', 'data.csv')
data <- read_csv(path_to_data)

Important: Use read_csv () instead of read.csv()

52 /58

Your turn [10:0@}

1) Use the here() and read csv() functions to load the data. csv file that is in the data
folder. Name the data frame object df.

2) Use the df object to answer the following questions:

e How many rows and columns are in the data frame?

o What type of data is each column?

e Preview the different columns - what do you think this data is about? What might one row
represent?

e How many unique airports are in the data frame?

o What is the earliest and latest observation in the data frame?

e What is the lowest and highest cost of any one repair in the data frame?

53 /58

Next week: better data wrangling with dplyr

C\F\\/ o 30 wranjlino}

Art by Allison Horst 54 [58

https://www.allisonhorst.com/

Select rows with filter ()

Example: Filter rows to find which Beatles members are still alive?

BaseR:

[beatles[beatles$deceased == FALSE,]]
dplyr:

[filter(beatles, deceased == FALSE)]

55/ 58

In 2 weeks: plotting with ggplot2

Translate data... ...Into information

#> # A tibble: 11 x 2

#> brainwt bodywt ror0s
#> <db 1> <db 1>
#> . 001 0.06
#> . 0066 1

#> . 00014 0.005
#> .0108 3.5
.0123 2.95
. 0063 1.7
.60 2547

. 0003 0.023
. 655 521

. 4 1 9 1 8 7 b . I;Z(Otfrain weight) |1|;9 _81
. 0035 0.77

#>
#>
#>
#>
#>
#> 10
#> 11

log(body weight) in kg

OCooNOYUIL P WN B
SO0 PhR,ROOOSOSOOSOO O

56 /58

A note about HW 9

e You have what you need to start now.
e |t will be much easier if you use the dplyr functions (i.e. read ahead).

57 [58

Extra Practice! [08 : 0@}

. Install the dslabs package.

2. Load the package, then use data(package = "dslabs") to see the different
data sets in this package.

. Pick one.

. Answer these guestions:

—

B~ W

What is the dataset about?

How many observations are in the data frame?
What is the original source of the data?

What type of data is each variable?

Find one thing interesting about it to share.

58 /58

