

Week 13: Monte Carlo Methods

Iill EMSE 4571: Intro to Programming for Analytics
○ John Paul Helveston
■April 27, 2023

Write your name on the quiz!

Rules:

- Work alone; no outside help of any kind is allowed.
- No calculators, no notes, no books, no computers, no phones.

Monte Carlo, Monaco

"Monte Carlo" is associated with 3 things

Gambling

Racing

Simulation

Week 13: Monte Carlo Methods

1. Monte Carlo Simulation

BREAK

2. Monte Carlo Integration

Week 13: Monte Carlo Methods

1. Monte Carlo Simulation

BREAK
2. Monte Carlo Integration

Monte Carlo Simulation: Computing Probability

General process:

- Run a series of trials.
- In each trial, simulate an event (e.g. a coin toss, a dice roll, etc.).
- Count the number of "successful" trials
$\frac{\text { \# Successful Trials }}{\# \text { Total Trials }}=$ Observed Odds \simeq Expected Odds
Law of large numbers:
As N increases, Observed Odds >> Expected Odds

How would you measure if a coin is "fair"?

Run a series of trials and record outcome: "heads" or "tails"

```
coin <- c("heads", "tails")
N <- 10000
tosses <- sample(x = coin, size = N, replace = TRUE)
head(tosses) # Preview first few tosses
```

\#> [1] "tails" "tails" "tails" "heads" "tails" "heads"
Probability of getting "heads":

```
sum(tosses == "heads") / N
```

```
#> [1] 0.5018
```


Tossing an unfair coin

Set the prob argument to a 40-60 coin

```
coin <- c("heads", "tails")
N <- 10000
tosses <- sample(x = coin, size = N, replace = TRUE, prob = c(0.4, 0.6))
head(tosses) # Preview first few tosses
```

```
#> [1] "tails" "heads" "tails" "heads" "heads" "tails"
```

Probability of getting "heads":

```
sum(tosses == "heads") / N
```

```
#> [1] 0.4026
```


A more complex simulation: dice rolling

What is the probability of rolling a 6 -sided dice 3 times and getting the sequence $1,3,5$?

```
library(tidyverse)
dice <- c(1, 2, 3, 4, 5, 6)
N <- 10000
rolls <- tibble(
    roll1 = sample(x = dice, size = N, replace = T),
    roll2 = sample(x = dice, size = N, replace = T),
    roll3 = sample(x = dice, size = N, replace = T)
)
```

```
head(rolls)
```

\#> \# A tibble:	6	\times	3	
\#>	rolll	roll2	roll3	
\#>	<dbl>	<dbl>	<dbl>	
\#>	1	4	5	2
\#> 2	4	1	1	
\#> 3	1	5	4	
\#> 4	2	6	6	
\#> 5	1	3	5	
\#> 6	6	2	6	

A more complex simulation: dice rolling

Simulated probability of getting sequence 1, 3, 5:

```
successes <- rolls %>%
    filter(roll1 == 1 & roll2 == 3 & roll3 == 5)
nrow(successes) / N
```

\#> [1] 0.0049

Actual probability of getting sequence 1, 3, 5:

$$
(1 / 6)^{\wedge} 3
$$

\#> [1] 0.00462963

Your Turn: Coins \& Dice

Using the sample() function, conduct a monte carlo simulation to estimate the answers to these questions:

- If you flipped a coin 3 times in a row, what is the probability that you'll get three "tails" in a row?
- If you rolled 2 dice, what is the probability that you'll get "snake-eyes" (two 1's)?
- If you rolled 2 dice, what is the probability that you'll get an outcome that sums to 8 ?

When replace = FALSE

Sometimes events cannot be independently simulated

What are the odds that 3 cards drawn from a 52 -card deck will sum to 13 ?

- Aces = 1
- Jack $=10$
- Queen = 10
- King $=10$

When replace = FALSE

Sometimes events cannot be independently simulated

```
cards <- c(seq(1, 10), 10, 10, 10)
deck <- rep(cards, 4) # Rep because there are 4 suits
length(deck)
```

\#> [1] 52

Draw 3 cards from the deck without replacement.

```
draw <- sample(x = deck, size = 3, replace = FALSE)
```

draw

```
#> [1] 9 4 10
```


When replace = FALSE

Note: You can't draw more than 52 cards without replacement:

```
draw <- sample(x = deck, size = 53, replace = FALSE)
```

\#> Error in sample.int(length(x), size, replace, prob): cannot take a sample larger than the population when 'replace = FALSE'

When replace = FALSE

What are the odds that 3 cards drawn from a 52 -card deck will sum to 13 ?

Repeat the 3-card draw N times:

```
N <- 100000
count <- 0
for (i in 1:N) {
    draw <- sample(x = deck, size = 3, replace = FALSE)
    if (sum(draw) == 13) {
        count <- count + 1
    }
}
count / N # Compute the probability
```

\#> [1] 0.03662

Your Turn: Cards

Use the sample() function and a monte carlo simulation to estimate the answers to these questions:

- What are the odds that four cards drawn from a 52-card deck will have the same suit?
- What are the odds that five cards drawn from a 52 -card deck will sum to a prime number?
- Aces = 1
- Jack = 10
- Queen = 10
- King = 10

Break

$05: 00$

Week 13: Monte Carlo Methods

1. Monte Carlo Simulation

BREAK

2. Monte Carlo Integration

Discrete vs. continuous random numbers

Discrete

Continuous

runif()

Takes random samples between bounds

```
sample_continuous <- runif(
    n = 5,
    min = 0,
    max = 1
)
sample_continuous
```

```
#> [1] 0.7536088 0.2830033 0.6428447
0.4526490 0.7055930
```


Monte Carlo Integration

Integration = compute the area "under the curve"

Find the area of $y=x^{2}$ between $4<x<8$

$$
\frac{\text { Area Under Curve }}{\text { Area of Rectangle }}=\frac{\# \text { Points Under Curve }}{\# \text { Total Points }}
$$

Monte Carlo Integration

$$
\frac{\text { Area Under Curve }}{\text { Area of Rectangle }}=\frac{\# \text { Points Under Curve }}{\# \text { Total Points }}
$$

$$
\text { Area Under Curve }=\text { Area of Rectangle }\left(\frac{\# \text { Points Under Curve }}{\# \text { Total Points }}\right)
$$

Monte Carlo Integration

Step 1: Compute area of rectangle

```
area_rectangle <- (8 - 4) * (8^2 - 0)
area_rectangle
```

\#> [1] 256

Monte Carlo Integration

Step 2: Simulate points

```
N <- 100000
points <- tibble(
    x = runif(N, min = 4, max = 8),
    y = runif(N, min = 0, max = 8^2)) %>%
    mutate(belowCurve = y < x^2)
head(points)
```



```
#> # A tibble: 6 x 3
#> x y belowCurve
#> <dbl> <dbl> <lgl>
#> 1 7.59 20.6 TRUE
#> 2 4.51 25.7 FALSE
#> 3 7.46 4.37 TRUE
#> 4
#> 5 6.43 27.1 TRUE
#> 6 7.35 48.0 TRUE
```


Monte Carlo Integration

Step 3: Compute area under curve

```
N <- 100000
points <- tibble(
    x = runif(N, min = 4, max = 8),
    y = runif(N, min = 0, max = 8^2)) %>%
    mutate(belowCurve = y < x^2)
```

```
points_ratio <- sum(points$belowCurve) / N
```

points_ratio <- sum(points\$belowCurve) / N
points_ratio

```
points_ratio
```



```
#> [1] 0.58365
```

```
area_under_curve <- area_rectangle * points_ratio
```

area_under_curve

```
#> [1] 149.4144
```


How did we do?

Simulated area under curve:

```
area_under_curve
```

```
#> [1] 149.4144
```


Actual area under curve:

$\int_{4}^{8} x^{2} \mathrm{dx}=\left.\left(\frac{x^{3}}{3}\right)\right|_{4} ^{8}=\frac{8^{3}}{3}-\frac{4^{3}}{3}=149.33 \overline{3}$
\% Error:

```
true_area <- ((8^3 / 3) - (4^3 / 3))
100*((area_under_curve - true_area) / true_area)
```


Monte Carlo π

Area of a circle:

$$
A_{\text {circle }}=\pi r^{2}
$$

Area of square containing circle:

$$
A_{\text {square }}=4 r^{2}
$$

Monte Carlo π

Area of a circle:

$$
A_{\text {circle }}=\pi r^{2}
$$

Area of square containing circle:

$$
A_{\text {square }}=4 r^{2}
$$

Ratio of areas $=\pi / 4$:

$$
\frac{A_{\text {circle }}}{A_{\text {square }}}=\frac{\pi r^{2}}{4 r^{2}}=\frac{\pi}{4}
$$

Monte Carlo π

Area of a circle:

$$
A_{\text {circle }}=\pi r^{2}
$$

Area of square containing circle:

$$
A_{\text {square }}=4 r^{2}
$$

Ratio of areas $=\pi / 4$:

$$
\begin{aligned}
& \frac{A_{\text {circle }}}{A_{\text {square }}}=\frac{\pi r^{2}}{4 r^{2}}=\frac{\pi}{4} \\
& \pi=4\left(\frac{A_{\text {circle }}}{A_{\text {square }}}\right)
\end{aligned}
$$

Your Turn: Estimate π

$$
\pi=4\left(\frac{A_{\text {circle }}}{A_{\text {square }}}\right)
$$

1. Create a tibble with variables x and y that each contain 10,000 random points between -1 and 1 , representing the (x, y) coordinates to a random point inside a square of side length 2 centered at (x, y) $=(0,0)$. Hint: use runif ()
2. Create a new column, radius, that is equal to the distance to each (x, y) point from the center of the square.
3. Create a new column, pointInCircle, that is TRUE if the point lies within the circle inscribed in the square, and FALSE otherwise.
4. Create the scatterplot on the left (don't worry about the precise colors, dimensions, etc.).
5. Estimate π by multiplying 4 times the ratio of points inside the circle to the total number of points

The

Monty Hall Problem

Your Turn: Monte Hall Problem

The
 Monty Hall Problem

1. You choose door 1,2 , or 3
2. One door is removed
3. Should you swap doors?

In this simulation, the prize is always behind door \#1:

- If you choose door \#1, you must KEEP it to win.
- If you choose door \#2 or \#3, you must SWAP to win.

1) Create the tibble, choices, with two variables:

- door contains the first door chosen $(1,2$, or 3$)$
- swap contains a logical (TRUE or FALSE) for whether the contestant swaps doors. Hint: use sample()

2) Create a new tibble, wins, which contains only the rows from choices that resulted in a win.
3) Compute the percentage of times the contestant won after swapping doors.

Reminders

1) Please fill the GW course feedback (see slack announcement)
2) Final is Thursday, May $11,3: 00 \mathrm{pm}-5: 00 \mathrm{pm}$
