
Week 1: Week 1: Getting StartedGetting Started
 EMSE 4571 / 6571: Intro to Programming for EMSE 4571 / 6571: Intro to Programming for

AnalyticsAnalytics

 John Paul Helveston John Paul Helveston

 January 16, 2025 January 16, 2025

1 / 731 / 73

Two rules:Two rules:
1) Be Present1) Be Present

2) Celebrate Mistakes2) Celebrate Mistakes

2 / 732 / 73

Week 1: Week 1: Getting StartedGetting Started
1. Course orientation1. Course orientation

BREAKBREAK

2. Getting started with R & RStudio2. Getting started with R & RStudio

3. Operators & data types3. Operators & data types

4. Preview of HW 14. Preview of HW 1

3 / 733 / 73

Week 1: Week 1: Getting StartedGetting Started
1. 1. Course orientationCourse orientation

BREAKBREAK

2. Getting started with R & RStudio2. Getting started with R & RStudio

3. Operators & data types3. Operators & data types

4. Preview of HW 14. Preview of HW 1

4 / 734 / 73

John Helveston, Ph.D.

Assistant Professor, Engineering Management & Systems Engineering

2016-2018 Postdoc at Institute for Sustainable Energy, Boston
University
2016 PhD in Engineering & Public Policy at Carnegie Mellon University
2015 MS in Engineering & Public Policy at Carnegie Mellon University
2010 BS in Engineering Science & Mechanics at Virginia Tech
Website: www.jhelvy.com

Meet your instructor!

5 / 73

https://www.bu.edu/ise/
http://www.jhelvy.com/

Pingfan Hu

Graduate Teaching Assistant (GTA)
2nd Year PhD student in EMSE

Meet your tutors!

6 / 73

Lola Nurullaeva

Learning Assistant (LA)
EMSE Senior & P4A / EDA alumni

Meet your tutors!

7 / 73

Course orientation
 Everything you need will be on the course website:

https://p4a.seas.gwu.edu/2025-Spring/

8 / 73

https://p4a.seas.gwu.edu/2025-Spring/

 Course is broken into two chunks:

1. Programming (before Spring Break)

2. Analytics (after Spring Break)

In the fall, you'll take EMSE 4572 / 6572: Exploratory Data Analysis

Fall 2024 Project Showcase

9 / 73

https://eda.seas.gwu.edu/showcase.html#fall-2024

Learning Objectives

After this class, you will know how to...

...write code to solve medium-sized tasks.

...pro-actively test and debug code.

...import, export, manipulate, and visualize data.

10 / 73

Attendance / Participation (7%)

Attendance will be taken and will be part of your participation grade

11 / 73

Homeworks (45% of grade)

 Every week (13 total, lowest dropped)

 Due 11:59pm Tues. before class

12 / 73

Late submissions

- 3 late days - use them anytime, no questions asked

- After that, 50% off for up to 24 hours after deadline, 0% afterwards

- Contact me for special cases

13 / 73

Quizzes (18% of grade)

 In class (almost) every other week (10 total, drop lowest
2)

 ~10 minutes (1-3 questions)

Why quiz at all? There's a phenomenon called the "retrieval effect" - basically, you
have to practice remembering things, otherwise your brain won't remember them (details
in the book "Make It Stick: The Science of Successful Learning").

14 / 73

https://www.hup.harvard.edu/catalog.php?isbn=9780674729018

Exams (30% of grade)

 Midterm (weeks 1 - 7) on March 06

 Final (weeks 1 - 14) on May 08

15 / 73

Grades

Component Weight Notes

Participation / Attendance 7%

Homeworks & Readings (13x) 45% Lowest 1 dropped

Quizzes (7x) 18% Lowest 2 dropped

Midterm Exam 10%

Final Exam 20%

16 / 73

Alternative Minimum Grade (AMG)
Designed for those who struggle early but work hard to succeed in 2nd half.
Highest possible grade is "C"

Course Component Weight

Best 10 Homeworks 40%

Best 4 Quizzes 10%

Midterm Exam 10%

Final Exam 40%

17 / 73

Typing Bonus Challenge
Earn a 1% bonus to your final grade by beating Professor Helveston in a speed
typing challenge
Challenge held on https://monkeytype.com/

(Yes, I'm serious...see rules here)

18 / 73

https://monkeytype.com/
https://p4a.seas.gwu.edu/2025-Spring/syllabus.html#typing-bonus-challenge

BE ON TIME

BE NICE

BE HONEST

DON'T CHEAT

Don't copy-paste others'
code!

Course policies

19 / 73

Assignments 1-7:
Not permitted

Assignments 8-13:
Permitted, with

caveats

AI Policy
(Demo)

20 / 73

https://p4a.seas.gwu.edu/2025-Spring/syllabus.html#use-of-chatgpt-and-other-ai-tools
https://chat.openai.com/

How to succeed in this class
 Participate during class!

 Start assignments early and read carefully!

 Get sleep and take breaks often!

 Ask for help!

21 / 73

Getting Help
 Use Slack to ask questions.

 Meet with your tutors

 Schedule a call w/Prof. Helveston

 GW Coders

22 / 73

https://emse-p4a-s25.slack.com/
https://jhelvy.appointlet.com/b/professor-helveston
http://gwcoders.github.io/

 Course Software

 Slack: Install app & turn notifications on!

 R & RStudio: Install both.

 RStudio Cloud: A (free) web-based version of RStudio.

23 / 73

https://p4a.seas.gwu.edu/2025-Spring/software.html
https://emse-p4a-s25.slack.com/
https://cloud.r-project.org/
https://posit.co/download/rstudio-desktop/
https://posit.cloud/plans/free

IntermissionIntermission

 Install Install course softwarecourse software if you haven't if you haven't

24 / 7324 / 73

0505::0000

https://p4a.seas.gwu.edu/2025-Spring/software.html

Week 1: Week 1: Getting StartedGetting Started
1. Course orientation1. Course orientation

BREAKBREAK

2. 2. Getting started with R & RStudioGetting started with R & RStudio

3. Operators & data types3. Operators & data types

4. Preview of HW 14. Preview of HW 1

25 / 7325 / 73

John Chambers Ross Ihaka Robert Gentleman

What is ? (Read a brief history here)
Chambers creates "S" (1976, Bell Labs)

Ross & Robert create "R" (1991, U. of Auckland)

26 / 73

https://en.wikipedia.org/wiki/John_Chambers_(statistician
https://en.wikipedia.org/wiki/Ross_Ihaka
https://en.wikipedia.org/wiki/Robert_Gentleman_(statistician
https://bookdown.org/rdpeng/rprogdatascience/history-and-overview-of-r.html

Python is a general purpose language
developed by Guido van Rossum, a
computer scientist.
Unlike R, Python was not originally
developed for data analysis.
Both languages are extremely useful,
and you should probably learn
python too.

The vast majority of concepts we'll
learn apply to python

Wait, why aren't we using Python?

27 / 73

https://en.wikipedia.org/wiki/Python_(programming_language
https://en.wikipedia.org/wiki/Guido_van_Rossum

Studio

What is RStudio?

28 / 73

Open this Not this

RStudio Orientation

29 / 73

Know the boxes
Customize the layout
Customize the look
Extra themes

RStudio Orientation

30 / 73

https://www.garrickadenbuie.com/project/rsthemes/

Your first conveRsation
Write stuff in the console, then press "enter"

3 + 4

#> [1] 7

3 + "4"

#> Error in 3 + "4": non-numeric argument to binary operator

31 / 73

Storing values
Use the "<-" symbol to assign values to objects

x <- 40
x

#> [1] 40

x + 2

#> [1] 42

32 / 73

Storing values
If you overwrite an object, R "forgets" the old value

x <- 42
x

#> [1] 42

x <- 50
x

#> [1] 50

33 / 73

Storing values

You can also use the = symbol to assign values

x = 50
x

#> [1] 50

...but you should use <-

34 / 73

Pro tip 1:

Shortcut for <- symbol

OS Shortcut

mac option + -
windows alt + -

(see here for more shortcuts)

Pro tip 2:

Always surround <- with spaces

Example:

x<-2

Does this mean x <- 2 or x < -2?

Storing values

35 / 73

https://support.posit.co/hc/en-us/articles/200711853-Keyboard-Shortcuts-in-the-RStudio-IDE

Storing values
You can store more than just numbers

x <- "If you want to view paradise"
y <- "simply look around and view it"

x

#> [1] "If you want to view paradise"

y

#> [1] "simply look around and view it"

36 / 73

R ignores extra space

x <- 2
y <- 3
z <- 4

Check:

x

#> [1] 2

y

#> [1] 3

z

#> [1] 4

R cares about casing

number <- 2
Number <- 3
numbeR <- 4

Check:

number

#> [1] 2

Number

#> [1] 3

numbeR

#> [1] 4 37 / 73

Use # for comments
R ignores everything after the # symbol

Example:

speed <- 42 # This is mph, not km/h
speed

#> [1] 42

38 / 73

Use meaningful variable names
Example: You are recording the speed of a car in mph

Poor variable name:

x <- 42

Good variable name:

speed <- 42

Even better variable name:

speed_mph <- 42

39 / 73

Use standard casing styles

Art by Allison Horst 40 / 73

https://github.com/allisonhorst/stats-illustrations

Art by Allison Horst

I recommend using one of these:

snake_case_uses_underscores
camelCaseUsesCaps

Example:

days_in_week <- 7
monthsInYear <- 12

Use standard casing styles

41 / 73

https://github.com/allisonhorst/stats-illustrations

View all the current objects:

objects()

#> [1] "class" "days_in_week"
"from" "input"
"monthsInYear" "number" "numbeR"
"Number" "output_file"
"path_notes" "path_pdf"
"path_slides" "proc"
"render_args"
#> [15] "render_fn" "root"
"self_contained" "speed"
"speed_mph" "to" "x"
"y" "z"

Remove an object by name:

rm(class)
objects()

#> [1] "days_in_week" "from"
"input" "monthsInYear" "number"
"numbeR" "Number"
"output_file" "path_notes"
"path_pdf" "path_slides" "proc"
"render_args" "render_fn"
#> [15] "root" "self_contained"
"speed" "speed_mph" "to"
"x" "y" "z"

The workspace

42 / 73

View prior code in history pane

Use "up" arrow see previous code
43 / 73

Staying organized
1) Save your code in .R files

File > New File > R Script

2) Keep work in R Project files

File > New Project...

44 / 73

Your turnYour turn

A. Practice getting organizedA. Practice getting organized

1. 1. Open RStudio and create a new R project calledOpen RStudio and create a new R project called
week1week1..

2. 2. Create a new R script and save it asCreate a new R script and save it as
practice.Rpractice.R..

3. 3. Open the Open the practice.Rpractice.R file and write your file and write your
answers to these questions in it.answers to these questions in it.

B. Creating & working with objectsB. Creating & working with objects

1) Create objects to store the values in this table:1) Create objects to store the values in this table:

CityCity
AreaArea

(sq mi)(sq mi)
PopulationPopulation

(thousands)(thousands)

San Francisco, CASan Francisco, CA 4747 884884

Chicago, ILChicago, IL 228228 2,7162,716

Washington, DCWashington, DC 6161 694694

2) Using the objects you created, answer the2) Using the objects you created, answer the
following questions:following questions:

Which city has the highest density?Which city has the highest density?
How many How many moremore people would need to live in DC people would need to live in DC
for it to have the same population density as Sanfor it to have the same population density as San
Francisco?Francisco?

45 / 7345 / 73

1010::0000

Week 1: Week 1: Getting StartedGetting Started
1. Course orientation1. Course orientation

BREAKBREAK

2. Getting started with R & RStudio2. Getting started with R & RStudio

3. 3. Operators & data typesOperators & data types

4. Preview of HW 14. Preview of HW 1

46 / 7346 / 73

Basic operators:

- Addition: +

- Subtraction: -

- Multiplication: *

- Division: /

Other important operators:

- Power: ^

- Integer Division: %/%

- Modulus: %%

R as a calculator

47 / 73

Integer division: %/%
Integer division drops the remainder from regular division

4 / 3 # Regular division

#> [1] 1.333333

4 %/% 3 # Integer division

#> [1] 1

48 / 73

Integer division: %/%
Integer division drops the remainder from regular division

What will this return?

4 %/% 4

#> [1] 1

What will this return?

4 %/% 5

#> [1] 0

49 / 73

Modulus operator: %%
Modulus returns the remainder after doing division

5 %% 3

#> [1] 2

3.1415 %% 3

#> [1] 0.1415

50 / 73

Modulus operator: %%
Modulus returns the remainder after doing division

What will this return?

4 %% 4

#> [1] 0

What will this return?

4 %% 5

#> [1] 4

51 / 73

If n %% 2 is 0, n is EVEN

10 %% 2

#> [1] 0

12 %% 2

#> [1] 0

Also works with negative numbers!

-42 %% 2

#> [1] 0

If n %% 2 is 1, n is ODD

1 %% 2

#> [1] 1

13 %% 2

#> [1] 1

Also works with negative numbers!

-47 %% 2

#> [1] 1

Odds and evens with n %% 2

52 / 73

The mod operator (%%) "chops" a number
and returns everything to the right

123456 %% 1

#> [1] 0

123456 %% 10

#> [1] 6

123456 %% 100

#> [1] 56

Integer division (%/%) "chops" a number
and returns everything to the left

123456 %/% 1

#> [1] 123456

123456 %/% 10

#> [1] 12345

123456 %/% 100

#> [1] 1234

Number "chopping" with 10s

53 / 73

Number "chopping" with 10s
%% returns everything to the right ("chop" ->)
%/% returns everything to the left (<- "chop")
The "chop" point is always just to the right of the chopping digit

Example “Chop” point

1234 %% 1 1234 | Right of the 1’s digit

1234 %% 10 123 | 4 Right of the 10’s digit

1234 %% 100 12 | 34 Right of the 100’s digit

1234 %% 1000 1 | 234 Right of the 1,000’s digit

1234 %% 10000 | 1234 Right of the 10,000’s digit

54 / 73

Compare if condition is TRUE or
FALSE using:

Less than: <
Less than or equal to : <=
Greater than or equal to: >=
Greater than: >
Equal: ==
Not equal: !=

2 < 2

#> [1] FALSE

2 <= 2

#> [1] TRUE

(2 + 2) == 4

#> [1] TRUE

(2 + 2) != 4

#> [1] FALSE

"penguin" == "penguin"

#> [1] TRUE

Comparing things: Relational operators

55 / 73

Comparing things: Logical operators

Make multiple comparisons with:

- And: &

- Or: |

- Not: !

56 / 73

With "and" (&), every part must be TRUE,
otherwise the whole statement is FALSE:

(2 == 2) & (3 == 3)

#> [1] TRUE

(2 == 2) & (2 == 3)

#> [1] FALSE

With "or" (|), if any part is TRUE, the
whole statement is TRUE:

(2 == 2) | (3 == 3)

#> [1] TRUE

(2 == 2) | (2 == 3)

#> [1] TRUE

Comparing things: Logical operators

57 / 73

Comparing things: Logical operators
The "not" (!) symbol produces the opposite statement:

! (2 == 2)

#> [1] FALSE

! (2 == 2) | (3 == 3)

#> [1] TRUE

! ((2 == 2) | (3 == 3))

#> [1] FALSE

58 / 73

TRUE | FALSE & FALSE

#> [1] TRUE

(TRUE | FALSE) & FALSE

#> [1] FALSE

! TRUE | TRUE

#> [1] TRUE

! (TRUE | TRUE)

#> [1] FALSE

Comparing things: Logical operators
Order precedence for logical operators: ! > & > |

59 / 73

Pro tip: Use parentheses

! 3 == 5 # Confusing

#> [1] TRUE

! (3 == 5) # Less confusing

#> [1] TRUE

Comparing things: Logical operators

60 / 73

R follows BEDMAS:

1. Brackets
2. Exponents
3. Division
4. Multiplication
5. Addition
6. Subtraction

Pro tip: Use parentheses

1 + 2 * 4 # Confusing

#> [1] 9

1 + (2 * 4) # Less confusing

#> [1] 9

Other important points

61 / 73

Your turnYour turn
Consider the following objects:Consider the following objects:

w <- w <- TRUETRUE
x <- x <- FALSEFALSE
y <- y <- TRUETRUE

Write code to answer the following questions:Write code to answer the following questions:

1. 1. Fill in Fill in relationalrelational operators to make the following statement return operators to make the following statement return TRUETRUE::

! (w __ x) & ! (y __ x)! (w __ x) & ! (y __ x)

2. 2. Fill in Fill in logicallogical operators to make this statement return operators to make this statement return FALSEFALSE::

! (w __ x) | (y __ x)! (w __ x) | (y __ x)

62 / 7362 / 73

0808::0000

Data Types
Type Description Example

double Numbers w/decimals (aka "float") 3.14
integer Numbers w/out decimals 42
character Text (aka "string") "this is some text"
logical Used for comparing objects TRUE, FALSE

63 / 73

Use typeof() to find the type

typeof(2)

#> [1] "double"

typeof("hello")

#> [1] "character"

typeof(TRUE)

#> [1] "logical"

64 / 73

Integers

No decimals (e.g. 7)

Doubles (aka "float")

Decimals (e.g. 7.0)

Numeric types (there are 2)

65 / 73

In R, numbers are "doubles" by default

typeof(3)

#> [1] "double"

R assumes that 3 is really 3.0

Make it an integer by adding L:

typeof(3L)

#> [1] "integer"

66 / 73

Character types
Use single or double quotes around anything:

typeof('hello')

#> [1] "character"

typeof("3")

#> [1] "character"

Use single / double quotes if the string contains a quote symbol:

typeof("don't")

#> [1] "character"
67 / 73

Logical data only have two values:
TRUE or FALSE

typeof(TRUE)

#> [1] "logical"

typeof(FALSE)

#> [1] "logical"

Note that these have to be in all caps,
and not in quotes:

typeof('TRUE')

#> [1] "character"

typeof(True)

#> Error: object 'True' not found

Logical types

68 / 73

Logical types
Use to answer questions about logical statements.

Example: Is 1 greater than 2?

1 > 2

#> [1] FALSE

1 < 2

#> [1] TRUE

69 / 73

Special values
Inf: Infinity (or really big numbers)

1/0

#> [1] Inf

NaN: Not a Number

0/0

#> [1] NaN

NA: Not available (value is missing)

NULL: no value whatsoever

70 / 73

Your turnYour turn
Will these return Will these return TRUETRUE or or FALSEFALSE??

(try to answer first, then run the code to check)(try to answer first, then run the code to check)
! typeof('3') == typeof(3)! typeof('3') == typeof(3)
(typeof(7) != typeof("FALSE")) | FALSE(typeof(7) != typeof("FALSE")) | FALSE
! (typeof(TRUE) == typeof(FALSE)) & FALSE! (typeof(TRUE) == typeof(FALSE)) & FALSE

71 / 7371 / 73

0505::0000

Week 1: Week 1: Getting StartedGetting Started
1. Course orientation1. Course orientation

BREAKBREAK

2. Getting started with R & RStudio2. Getting started with R & RStudio

3. Operators & data types3. Operators & data types

4. 4. Preview of HW 1Preview of HW 1

72 / 7372 / 73

Go to the schedule

...and read carefully!

73 / 73

https://p4a.seas.gwu.edu/2025-Spring/schedule.html

